Énoncé

On désigne par n un entier naturel supérieur ou égal à 2. On dispose de n urnes, numérotées de 1 à n, contenant chacune n boules toutes identiques. On répète n épreuves, chacune consistant à choisir une urne au hasard et à en extraire une boule au hasard. On suppose que les choix des urnes sont indépendants les uns des autres.

Pour tout $i \in [1; n]$, on note X_i la variable aléatoire prenant la valeur 1 si l'urne numérotée i contient toujours n boules à l'issue des n épreuves; et qui prend la valeur 0 sinon.

Pour tout i et tout k de [1; n], on note $U_{i,k}$ l'évènement "l'urne numérotée i est choisie à la k-ième épreuve".

1. 1.a. Soit $i \in [1; n]$. Écrire l'évènement $[X_i = 1]$ à l'aide de certains des évènements $U_{i,k}$, puis montrer que :

$$\mathbb{P}([X_i=1]) = \left(1 - \frac{1}{n}\right)^n$$

- **1.b.** Soient i et j deux éléments distincts de [1; n]. Démontrer : $\mathbb{P}([X_i = 1] \cap [X_j = 1]) = \left(1 \frac{2}{n}\right)^n$.
- 1.c. Comparer $\left(1-\frac{2}{n}\right)$ et $\left(1-\frac{1}{n}\right)^2$ et en déduire que, si i et j sont deux entiers distincts de [1;n], alors les variables aléatoires X_i et X_j ne sont pas indépendantes.
- 2. On pose $Y_n = \sum_{i=1}^{n} X_k$.
 - **2.a.** Déterminer l'espérance de Y_n .
 - 2.b. En déduire $\lim_{n\to+\infty}\frac{\mathbb{E}(Y_n)}{n}$ et donner un équivalent de $\mathbb{E}(Y_n)$ lorsque n est au voisinage de $+\infty$.
- 3. Pour tout $i \in [1; n]$, on note N_i la variable aléatoire égale au nombre de boules manquantes dans l'urne numérotée i à l'issue des n épreuves.
 - **3.a.** Donner la loi de N_i ainsi que son espérance.
 - **3.b.** Que vaut le produit $N_i X_i$?
 - 3.c. Les variables aléatoires N_i et X_i sont-elles indépendantes?
- 4. Recopier et compléter les lignes manquantes du programme ci-dessous de sorte que l'exécution de **simul (n)** simule l'expérience décrite au début de cet exercice et renvoie deux listes, la première contenant les réalisations des variables aléatoires $X_1, ..., X_n$; et la seconde les réalisations des variables aléatoires $N_1, ..., N_n$.

```
import numpy.random as rd

def simul(n):
    X = . . . . .
    N = . . . . .
    for k in range(n):
        i = . . . . .
        X[i-1] = . . . . .
        N[i-1] = . . . . .
    return X, N
```

Corrigé

On désigne par n un entier naturel supérieur ou égal à 2. On dispose de n urnes, numérotées de 1 à n, contenant chacune n boules toutes identiques. On répète n épreuves, chacune consistant à choisir une urne au hasard et à en extraire une boule au hasard. On suppose que les choix des urnes sont indépendants les uns des autres.

Pour tout $i \in [1; n]$, on note X_i la variable aléatoire prenant la valeur 1 si l'urne numérotée i contient toujours n boules à l'issue des n épreuves; et qui prend la valeur 0 sinon.

Pour tout i et tout k de [1; n], on note $U_{i,k}$ l'évènement "l'urne numérotée i est choisie à la k-ième épreuve".

1. 1.a. Soit $i \in [1; n]$. Écrire l'évènement $[X_i = 1]$ à l'aide de certains des évènements $U_{i,k}$, puis montrer que :

$$\mathbb{P}\left([X_i=1]\right) = \left(1 - \frac{1}{n}\right)^n$$

 $[X_i=1]$ est réalisé si, et seulement si, l'urne i contient toujours n boules à l'issue des n épreuves si, et seulement si, aucune boule n'a été piochée dans l'urne i au cours des n épreuves si, et seulement si, des épreuves 1 à n, toutes les boules ont été piochées dans d'autres urnes que l'urne i

Important!

Cette étape permet de reformuler à volonté ce que traduit l'évènement $[X_i = 1]$ afin de pouvoir l'écrire ensuite comme demandé.

D'où

$$[X_i = 1] = \bigcap_{k=1}^n \overline{U_{i,k}}$$

Par conséquent :

$$\mathbb{P}([X_i = 1]) = \mathbb{P}\left(\bigcap_{k=1}^n \overline{U_{i,k}}\right)$$
$$= \bigcap_{k=1}^n \mathbb{P}(\overline{U_{i,k}})$$
$$= \bigcap_{k=1}^n \frac{n-1}{n}$$
$$= \left(\frac{n-1}{n}\right)^n$$

les choix des urnes sont indépendants les uns des autres, donc les évènements $\overline{U_{i,1}}, \dots \overline{U_{i,n}}$ sont indépendants

équiprobabilité du choix de l'urne

Conclusion :
$$\mathbb{P}([X_i = 1]) = \left(1 - \frac{1}{n}\right)^n$$
.

1.b. Soient i et j deux éléments distincts de [1; n]. Démontrer : $\mathbb{P}([X_i = 1] \cap [X_j = 1]) = \left(1 - \frac{2}{n}\right)^n$.

 $[X_i = 1] \cap [X_j = 1]$ est réalisé si, et seulement si, les urnes i et j contiennent toujours n boules à l'issue des n épreuves

si, et seulement si, aucune boule n'a été piochée dans les urnes i et j au cours des n épreuves

si, et seulement si, des épreuves 1 à n, toutes les boules ont été piochées dans d'autres urnes que les urnes i et j

D'où

$$[X_i = 1] \cap [X_j = 1] = \bigcap_{k=1}^n \left(\overline{U_{i,k}} \cap \overline{U_{j,k}} \right)$$

Par conséquent :

$$\mathbb{P}\big([X_i=1]\cap[X_j=1]\big)=\mathbb{P}\left(\bigcap_{k=1}^n\big(\overline{U_{i,k}}\cap\overline{U_{j,k}}\big)\right)$$
 les choix des urnes sont indépendants les uns des autres
$$=\prod_{k=1}^n\mathbb{P}\big(\overline{U_{i,k}}\cap\overline{U_{j,k}}\big)$$
 équiprobabilité du choix de l'urne
$$=\prod_{k=1}^n\frac{n-2}{n}$$

$$=\left(\frac{n-2}{n}\right)^n$$

Conclusion: si i et j sont deux éléments distincts de [1; n], alors $\mathbb{P}([X_i = 1] \cap [X_j = 1]) = \left(1 - \frac{2}{n}\right)^n$.

1.c. Comparer $\left(1-\frac{2}{n}\right)$ et $\left(1-\frac{1}{n}\right)^2$ et en déduire que, si i et j sont deux entiers distincts de [1;n], alors les variables aléatoires X_i et X_j ne sont pas indépendantes.

Pour comparer deux réels, on étudie le signe de leur différence.

$$\left(1 - \frac{2}{n}\right) - \left(1 - \frac{1}{n}\right)^2 = \left(1 - \frac{2}{n}\right) - \left(1 - \frac{2}{n} + \frac{1}{n^2}\right)$$
$$= \frac{-1}{n^2}$$
$$< 0$$

Par conséquent :

$$\left(1-\frac{2}{n}\right) < \left(1-\frac{1}{n}\right)^2$$

- Solent $i, j \in [1; n]$. Supposons que $i \neq j$.
 - * D'après la question précédente :

$$\mathbb{P}([X_i = 1] \cap [X_j = 1]) = \left(1 - \frac{2}{n}\right)^n$$

* Or X_i et X_j ont même loi, donc d'après la question **1.a.** :

$$\mathbb{P}([X_i = 1])\mathbb{P}([X_j = 1]) = \left(1 - \frac{1}{n}\right)^n \left(1 - \frac{1}{n}\right)^n$$
$$= \left(1 - \frac{1}{n}\right)^{2n}$$

Or, d'après ce qui précède :

$$\left(1-\frac{2}{n}\right) < \left(1-\frac{1}{n}\right)^2$$

Donc, par stricte croissance de la fonction ." sur \mathbb{R}^+ :

$$\left(1-\frac{2}{n}\right)^n < \left(1-\frac{1}{n}\right)^{2n}$$

D'où:

$$\mathbb{P}([X_i = 1] \cap [X_j = 1]) \neq \mathbb{P}([X_i = 1]) \mathbb{P}([X_j = 1])$$

Conclusion : les variables aléatoires X_i et X_j ne sont pas indépendantes.

2. On pose
$$Y_n = \sum_{k=1}^n X_k$$

2.a. Déterminer l'espérance de Y_n .

La variable aléatoire Y_n admet une espérance comme somme de variables aléatoires qui en admettent une $(X_1,...,X_n$ admettent toutes une espérance car elles suivent une loi de Bernoulli); et :

$$\mathbb{E}(Y_n) = \mathbb{E}\left(\sum_{i=1}^n X_i\right)$$
 linéarité de l'espérance, toutes existent
$$= \sum_{i=1}^n \mathbb{E}(X_i)$$
 pour tout $i \in [1; n]$, X_i suit la loi de Bernoulli de paramètre $\mathbb{P}\left([X_i = 1]\right)$ qui vaut $\left(1 - \frac{1}{n}\right)^n$

Conclusion : $\mathbb{E}(Y_n) = n \left(1 - \frac{1}{n}\right)^n$.

2.b. En déduire $\lim_{n \to +\infty} \frac{\mathbb{E}(Y_n)}{n}$ et donner un équivalent de $\mathbb{E}(Y_n)$ lorsque n est au voisinage de $+\infty$.

• Pour n suffisamment proche de $+\infty$, on a ainsi, d'après la question précédente :

$$\frac{\mathbb{E}(Y_n)}{n} = \left(1 - \frac{1}{n}\right)^n$$

$$= \exp\left(n\ln\left(1 - \frac{1}{n}\right)\right)$$
licite car pour n suffisamment proche de $+\infty$, $1 - \frac{1}{n} > 0$

Or:

$$\forall n \in \mathbb{N}^*, \ \frac{-1}{n} \neq 0$$

$$\forall \lim_{n \to +\infty} \frac{-1}{n} = 0$$

™Réflexe!

Quand la variable est en exposant et en base, on repasse à l'écriture avec exp et ln. D'où:

$$\ln\left(1-\frac{1}{n}\right) \underset{n\to+\infty}{\sim} \frac{-1}{n}$$

Et ainsi :

$$n \ln \left(1 - \frac{1}{n}\right) \underset{n \to +\infty}{\sim} -1$$

Par conséquent $\lim_{n \to +\infty} n \ln \left(1 - \frac{1}{n}\right) = -1$ et donc, par composition de limites :

$$\lim_{n \to +\infty} \exp\left(n \ln\left(1 - \frac{1}{n}\right)\right) = e^{-1}$$

Conclusion:
$$\lim_{n \to +\infty} \frac{\mathbb{E}(Y_n)}{n} = e^{-1}$$

 — ★ Classique! ★

 De la même manière, on démontre

que pour tout $x \neq 0$: $\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n = e^x$

Et c'est encore valable si x = 0.

• On en déduit :

$$\lim_{n \to +\infty} \frac{\mathbb{E}(Y_n)}{n e^{-1}} = 1$$

Conclusion :
$$\mathbb{E}(Y_n) \underset{n \to +\infty}{\sim} \frac{n}{e}$$
.

- 3. Pour tout $i \in [1; n]$, on note N_i la variable aléatoire égale au nombre de boules manquantes dans l'urne numérotée i à l'issue des n épreuves.
 - **3.a.** Donner la loi de N_i ainsi que son espérance.
 - ✓ L'expérience s'assimile à n répétitions indépendantes de la même épreuve de Bernoulli dont le succès "piocher une boule dans l'urne i" est de probabilité $\frac{1}{n}$ (par équiprobabilité du choix de l'urne).
 - ✓ La variable aléatoire N_i prend comme valeur le nombre de boules manquantes dans l'urne i; autrement dit, elle prend comme valeur le nombre de succès de l'expérience ainsi décrite.

Conclusion :
$$N_i \hookrightarrow \mathscr{B}\left(n; \frac{1}{n}\right)$$
 et donc $\mathbb{E}(N_i) = 1$.

3.b. Que vaut le produit $N_i X_i$?

Soit $\omega \in \Omega$. On a déjà :

$$(N_i X_i)(\omega) = N_i(\omega) \times X_i(\omega)$$

Distinguons deux cas :

• si $\omega \in [X_i = 0]$: Dans ce cas, $X_i(\omega) = 0$, et donc

$$N_i(\omega)X_i(\omega) = 0$$

• si $\omega \notin [X_i = 0]$:

Alors, puisque $X_i(\Omega) = \{0, 1\}$, on a nécessairement $X_i(\omega) = 1$.

Par conséquent, l'urne i contient toujours n boules à l'issue des n épreuves. D'où : $N_i(\omega)=0$. Et ainsi :

$$N_i(\omega)X_i(\omega) = 0$$

Dans tous les cas :

$$N_i(\omega)X_i(\omega) = 0$$

Conclusion: $N_i X_i$ est constante égale à 0.

3.c. Les variables aléatoires N_i et X_i sont-elles indépendantes?

D'après la question précédente, la variable aléatoire $N_i X_i$ est constante égale à 0, donc elle admet une espérance et :

$$\mathbb{E}(N_i X_i) = 0$$

Or:

$$\mathbb{E}(N_i) \times \mathbb{E}(X_i) = 1 \times \left(1 - \frac{1}{n}\right)^n \neq 0$$

Par conséquent :

$$\mathbb{E}(N_i X_i) \neq \mathbb{E}(N_i) \mathbb{E}(X_i)$$

Conclusion : les variables aléatoires N_i et X_i ne sont pas indépendantes.

4. Recopier et compléter les lignes manquantes du programme ci-dessous de sorte que l'exécution de simul (n) simule l'expérience décrite au début de cet exercice et renvoie deux listes, la première contenant les réalisations des variables aléatoires $X_1, ..., X_n$; et la seconde les réalisations des variables aléatoires $N_1, ..., N_n$.

♣ Méthode !

Une variable aléatoire est une application de Ω dans \mathbb{R} . Démontrer une égalité entre variables aléatoires, c'est donc comme démontrer l'égalité de deux fonctions... Voici pourquoi on doit évaluer en $\omega \in \Omega$ ici.

ு Rappel...

Si X et Y sont deux variables aléatoires indépendantes et admettent une espérance, alors la variable aléatoire XY admet une espérance et $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. On utilise ici la contraposée...

```
import numpy.random as rd

def simul(n):
    X = . . . . .
    N = . . . . .
    for k in range(n):
        i = . . . . .
        X[i-1] = . . . . .
        N[i-1] = . . . . .
    return X, N
```

Voici :

```
import numpy.random as rd

def simul(n):
    X = [1 for i in range(n)]
    N = [0 for i in range(n)]
    for k in range(n):
        i = rd.randint(1,n+1)
        X[i-1] = 0
        N[i-1] = N[i-1] + 1
    return X,N
```

Explications :

- On initialise X avec une liste contenant n fois la valeur 1 : le i-ème élément de la liste X prendra la valeur 0 si au moins une boule est extraite de l'urne i (donc fournira une réalisation de X_i).
- On initialise $\mathbb N$ avec une liste contenant n fois la valeur 0: le i-ème élément de la liste $\mathbb N$ représentera le nombre de boules manquantes dans l'urne i (donc fournira une réalisation de N_i).
- En ligne 7, on choisit un entier au hasard entre 1 et *n* : on choisit donc une urne dans laquelle on pioche une boule...
- Ayant choisi l'urne i, on enlève une boule dans cette urne (X_i prend donc la valeur 0 et N_i est augmenté de 1).

X Attention !

Les urnes sont numérotées de 1 à n alors que l'indexation des listes X et N débute à O...