s coxous EDHEC 2011 VOIE E

XERCICE 2

ENONCE

On note & = (ey, e1, e;) la base canonique de R;[x]. On note également id l'endomorphisme identité sur R;[x].
On considére l'application f qui, a toute fonction polynomiale P € Ry[x], associe la fonction polynomiale f(P) définie par :

¥x € R, f(P)(x) = 2xP(x) = (x* = 1)P'(x)

1. 1.a. Montrer que f est une application linéaire.
1.b. Ecrire f(eg), f(e1) et f(e2) comme des combinaisons linéaires de eg, e et e,. En déduire que f est un endomorphisme de Ry[x| puis donner sa
matrice dans la base %. On notera A cette matrice.
2. 2.a. Vérifier que Im(f) = Vect(eq, eg + e3) et donner le rang de f.
2.b. Déterminer ker(f).
3. 3.a. Déterminer les valeurs propres de A.

3.b. Déterminer des bases de chaque sous-espace propre de A et en déduire que A est diagonalisable. Donner alors deux matrices P et D telles
que P soit inversible, D soit diagonale et A= PDP~".
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CORRIGE

On note & = (e, €1, €;) la base canonique de Ry[x] On note également id l'endomorphisme identité sur Ry[x].
On considére l'application f qui, a toute fonction polynomiale P € Ry[x], associe la fonction polynomiale f(P) définie
par :

Vx € R, f(P)(x) = 2xP(x) — (x* — 1)P'(x)

1. 1.a. Montrer que f est une application linéaire. X Attention !
Sotent A, 1 € R et P, Q € Ry[x]. Montrons que f(AP + pQ) = Af(P) + uf(Q). ﬁs'agtt d'une égalité de fonc-
tions...

On a, par linéarité de la dérivation, pour tout x € R :

(AP + pO)(x) = 2x (AP(x) + uO(x)) — (x* = 1) (AP'(x) + pQ'(x))
A x 2XP(X) + 1 % 2x0(x) — Al = NP/ (x) — p(x*> = 1)Q'(x)

AF(P)(x) + pf(Q)(x)

Par conséquent : Vx € R, f(AP + pQ) = Af(P) + pf(Q). Autrement dit : (AP + pQ) = Af(P) + pf(0O).

Conclusion : f est une application linéaire.

1.b. Ecrire f(eq), f(e1) et f(es) comme des combinaisons linéaires de eg, e et e,. En déduire que f est un endo-
morphisme de Ry[x] puis donner sa matrice dans la base Z. On notera A cette matrice.

e Sans difficulté, on a :

Vx € R, fleg)(x) = 2x ; fle))(x)=x>+1 ; flez)(x) = 2x Important !

Il s'aqit ici d'éqgalité de fonctions :
clest bien ce qui est demandé par
fleo) = 2e1 ; fler) =eo+ ez ; flez) = 2e Uénoncé,

D'ou :

e Déduisons-en que f est un endomorphisme de Ry[x].
Soit P € Ry[x]. Il existe alors un unique triplet (a,b,¢) € R°, que lon considére ensuite, tels que Remarque

P = aeq+ bey + ce;. On a ainsi : ﬂunlclté n'est pas utile ici.
f(P) = f(aey + bey + cey)
linéarité de f
— af(ep) + bf(er) + cf(ey) ) inéaié de

Or, d'aprés le point précédent, f(ep), f(e1) et f(e;) sont dans R;[x]. Par stabilité de R;[x] par combinaisons
linéaires, on obtient finalement :
f(P) € Ry[x]

Conclusion : puisque f est linéaire d'aprés la question précédente, on en déduit que f est un
endomorphisme de Ry[x].

e D'apres le premier point, on a :

A=

o N O
IR N
o N O

2. 2.a. Vérifier que Im(f) = Vect(eq, eg + e;) et donner le rang de f.

. L ! = R ...
e Puisque (eg, e1, e7) est génératrice de Ry[x], on a : Si( ap|)3et érmtrice d
t(e1,..., ey) est génératrice de
E et que f est linéaire de E dans
Im(f) = Vect(f(ea), f(e). f(e2)) o

question précédente
= \/ect(Zeq, ey + ey, Zew) J

= \/ect(eq, ey + e;)

Im(f) = \/ect(f(e1), f(en))

e La famille (e, eg + e,) est ainsi :

v génératrice de Im(f) par ce qui précede,

v libre car seulement constituée de deux vecteurs non colinéaires. Remarque
P . la famill I le Im(f Il est possible de traiter cette
ar conséquent, la famille (e, eg + e,) est une base de Im(f). question en utilisant la matrice A

sans oublier de conclure avec les
bons objets pour f...

Conclusion : Im(f) = Vect(eq, eg + e2) et rg(f) = dim (\m(r’)) =2

2.b. Déterminer ker(f).

e D'apres le théoreme du rang :
dim (Ry[x]) = rg(f) + dim ( ker(f))

Or dim (RZ[X]) = 3 et, d'apres la question précédente, rg(f) = 2. D'ou

dim ( ker(f)) =1
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e Remarquons ensuite que | 0 | & ker(A). Donc eg — e, € ker(f).

-1 — ¥ Astuce du chef ¥ —
. . . . < On fait aisément cett
Par conséquent, la famille (eg — e;) est une famille de ker(f) qui est : puqssﬁealfser?ggnizsirgtmgrgsela

matrice A sont égales...
Remarquer l'égalité C; + 0C, —
v de cardinal 1 égal a la dimension de ker(f). G3 = 031 nous permet de mettre
en évidence un vecteur du noyau
de la matrice A..

Conclusion : la famille (eg — e;) est une base de ker(f). En effet, st Gy, G, G sont les
colonnes d'une matrice B, on a :

X
’ () e

v libre car constituée d'une unique vecteur non nul,

Il est bien é\{ider’nmentv possible d\e travailler sur la matrice Al donc - 2 € ker(B)
En effet, apres résolution de systeme, on trouve : 7
1 XC1+yCz+ZC3=O..,
ker(A) = Vect _01 Pourquoi ?

Clest 'isomorphisme de représen-
tation qui permet de passer de

Ainst : ker(A) a ker(f
ker(f) = Vect(ep — e2) erlA) & ker(f).
La famille (eg — e7) est ainsi : — Remarque
v génératrice de ker(f); Il est toujours un peu confus

lorsque l'énoncé demande de
‘déterminer ker(f)". En effet, on
Conclusion : la famille (eg — e7) est une base de ker(f). ( pourrait penser que s'arréter a
une famille génératrice suffit. Je
conseille vivement de toujours

, : conclure avec une base (sauf
3. 3.a. Déterminer les valeurs propres de A. quand ker(f) = {00 }).

Soit A€ R. Ona:

v libre car constituée d'un unique vecteur non nul.

— = Rappel...
] v 4AeSA<=> A—Als) 43
[gIA — A) - gl 2 -2 2 PIA) = rglA=Ah)
0 1T =4
2 =1 2
= g —4 1 0
el 0 1 —A
2 =) 2
= rg|0 2—A 2A
L« 2L, + AL 0 . 2
2 =) 2
= rg |0 1 —A
Lol 0 2-X 2
2 =) 2
= 7 g0 1 —A
Lelb—@2=M)L 0 0 20+42-49)
2 =) 2
= g0 1 —A
0 0 A4—A)
2 =X 2
Or, la matrice |0 1 —A est trianqulaire supérieure; par conséquent, elle est de rang différent de

0 0 AM4—-X)
3 si, et seulement si, A(4 — )k)) =0.

Conclusion : Sp(A) = {—2,0; 2}.

3.b. Déterminer des bases de chaque sous-espace propre de A et en déduire que A est diagonalisable. Donner alors
deux matrices P et D telles que P soit inversible, D soit diagonale et A = PDP~".
Pour tout A € Sp(A), on note E,(A) le sous-espace propre de A associé a la valeur propre A.

e On sait que :
Y dim (E(A) <3 ; VA€ Sp(A), dim (E,(A)) >1
AeSp(A)
Or, d'apres la question précédente, la matrice A possede trois valeurs propres différentes. Par saturation
des dimensions, on en déduit que chaque sous-espace propre associé est de dimension 1.
* Pour A=0:

D'apres la question 2.b., on sait déja que (ep — e;) est une base de ker(A). | tant |
mportant !

* Pour A = -2 Il faut s'entratner a trouver de téte
210 1 des vecteurs dans les noyaux des
Ona:A+25= 1|2 2 2| etonremarque que | —2 | & ker(A+ 25). matrices... surtout quand elles ont

0 1 2 1 des coefficients nuls, c'est plus

simple. Reprendre l'astuce ci-
dessus si nécessaire.
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Par conséquent, la famille -2 est une famille de £_,(A) qui est :
1

v libre car constituée d'un unique vecteur non nul,
v de cardinal 1, égal a la dimension de £_,(A).

1
Conclusion : la famille —2 est une base de £_,(A).
1
* Pour A=2:
-2 1 0 1
Ona:A—-25=1| 2 —=2 2 | etonremarque que |2 | & ker(A—25).
0 1T =2 1
1
Par conséquent, la famille 2 est une famille de E,(A) qui est :
1

v libre car constituée d'un unique vecteur non nul,
v de cardinal 1, égal a la dimension de £E;(A).

1
Conclusion : la famille 2 est une base de E,(A).
1
1 1 1
e La famille 01,|-2 2| |, notée &', est une famille de M5 +(R) qui est :
-1 1 1

v libre car constituée de vecteurs propres de A associés a des valeurs propres distinctes,
v de cardinal 3, égal a la dimension de M5+(R).

Par conséquent, £’ est une base de M5;(R).

Conclusion : il existe une base de M5 1(R) constituée de vecteurs propres de A, donc A est diagonalisable.

En posant
1 T 1 0 0 O
P={0 -2 2|, D=0 =2 0
-1 1 1 0 0 2
ona:

v P est inversible car cest la matrice de passage de la base canonique de M;+(R) vers la base #';
v D est diagonale;

v/ A=PDP.
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— == Rappel...

Cette relation est due a la formule
de changement de bases. En effet,
en notant & = (eg — e1,eq —

< 2e1 +e),e0 4+ 2e1 + ey), ona:
A = Maty(f), P = Ppco et

D = Matg(f). La formule de
changement de base donne bien
A= PDP".




