

Devoir surveillé 1

"Je ne crois pas au génie, seulement au dur travail." Michel Petrucciani

La qualité de la rédaction, le soin porté à la copie, la lisibilité, l'orthographe, la rigueur du vocabulaire ainsi que la clarté des raisonnements sont des critères importants d'évaluation. Quelques précisions :

- les résultats finaux doivent être clairement mis en évidence (soulignés ou encadrés),
- les questions doivent être présentées dans l'ordre du sujet.

L'usage de tout matériel électronique est interdit. Aucun document n'est autorisé. Le sujet est à rendre avec la copie.

NOMPrénom

Exercice 1 - Questions de cours & technique

Les questions de cet exercice sont indépendantes.

- 1. Traduire les énoncés suivant avec des quantificateurs (f désigne une fonction définie sur \mathbb{R} et (u_n) désigne une suite définie sur \mathbb{N}):
 - (a) La fonction f est bornée par -1 et 2 sur \mathbb{R} .
 - (b) La fonction f n'est pas majorée sur \mathbb{R} .
 - (c) La fonction f n'est pas paire.
 - (d) La fonction f s'annule sur \mathbb{R} .
 - (e) La suite (u_n) est constante.
 - (f) L'entier relatif n est impair.
- 2. Écrire, avec des quantificateurs, la négation de l'énoncé suivant :

$$\forall x \in \mathbb{R}, (x \ge 5 \Longrightarrow f(x) < 0)$$

où f désigne une fonction définie sur \mathbb{R} .

- 3. Pour chacune des propositions suivantes, préciser si elle est vraie ou fausse, et justifier.
 - (a) $\forall a, b, c, d \in \mathbb{R}$, $("a \le b \text{ et } c \le d" \Longrightarrow ac \le bd)$
 - (b) $\forall a, b \in \mathbb{R}^+, \sqrt{a+b} = \sqrt{a} + \sqrt{b}$
 - (c) $\exists a, b \in \mathbb{R}^* / \frac{1}{a} + \frac{1}{b} = \frac{2}{a+b}$
 - (d) $\forall a, b \in \mathbb{R}_*^+ / \frac{a}{b} + \frac{b}{a} \ge 2$
 - (e) Si f est une fonction définie sur \mathbb{R} telle que f(-2) = -f(2), alors f est impaire.
 - (f) Si f et g sont deux fonctions définies sur \mathbb{R} , telles que f est croissante et g est décroissante, alors $f \circ g$ est décroissante sur \mathbb{R} .
 - (g) Si f et g sont deux fonctions définies sur \mathbb{R} , telles que f est croissante et g est décroissante, alors f+g est décroissante sur \mathbb{R} .
- 4. Démontrer que pour tout $x \in \mathbb{R} \setminus \{1\}, \frac{x-2}{x-1} \neq 1$.
- 5. Déterminer tous les réels x tels que $\sqrt{x+1} = \frac{-1}{3}x + 3$.
- 6. Résoudre l'inéquation $x^3 > x$, d'inconnue $x \in \mathbb{R}$.
- 7. Déterminer l'ensemble de définition de la fonction $f: x \mapsto \frac{1}{\sqrt{4x^2 + 4x + 1}}$
- 8. Considérons la fonction f, définie sur \mathbb{R}_*^+ par $f(x) = \frac{x^2}{2} \ln(x)$. Étudier les variations de f sur \mathbb{R}_*^+ .
- 9. Considérons la suite (u_n) définie sur $\mathbb N$ par : $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb N, \ u_{n+1} = 2u_n + n 1 \end{cases}$ Démontrer, par récurrence, que pour tout $n \in \mathbb N$, $u_n = 2^n n$.
- 10. Démontrer :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^+, \ (1+x)^n \ge 1 + nx$$

Exercice 2 - QCM

Cet exercice est un questionnaire à choix multiple. Pour chaque question, une seule des quatre réponses est exacte. Entourer cette réponse.

1. Les solutions de l'équation $x^2 - x - 2 = 0$ sont :

- c) cette équation n'a pas de solution réelle
- d) aucune des trois propositions

2. Si pour tout $x \neq 0$, $f(x) = \frac{1}{x} + x$, alors, pour tout $x \neq 0$, f'(x) =

a)
$$\frac{-1+x^2}{x^2}$$
 b) $\frac{1}{x^2}+1$

b)
$$\frac{1}{x^2} + 1$$

c)
$$\frac{-1}{x^2} + x$$

d) aucune des trois propositions

3. Si pour tout $x \neq \frac{1}{2}$, $f(x) = \frac{x+1}{2x-1}$, alors, pour tout $x \neq \frac{1}{2}$, $f'(x) = \frac{1}{2}$

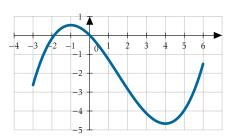
a)
$$\frac{1}{(2x-1)^2}$$

a)
$$\frac{1}{(2x-1)^2}$$
 b) $\frac{3}{(2x-1)^2}$ c) $\frac{-1}{(2x-1)^2}$

c)
$$\frac{-1}{(2x-1)^2}$$

d) aucune des trois proposi-

4. On considère la fonction f, définie et dérivable sur [-3;6], dont la courbe représentative est donnée :



On a:

a)
$$f'(0) = 0$$

b)
$$f'(0) = -1$$

c)
$$f'(-1) = 0.6$$

d)
$$f'(-2) = -1$$

5. Dans le même contexte que la question précédente,

a)
$$f'(x) \ge 0 \text{ sur } [-2; 0]$$

b)
$$f'(x) = 0 \iff x = -1$$

c)
$$f'$$
 est monotone sur $[-3; 6]$

a) $f'(x) \ge 0$ sur [-2;0] b) $f'(x) = 0 \iff x = -1$ c) f' est monotone sur [-3;6] d) aucune des trois propositions

Exercice 3 - Étude d'une fonction

Notons f la fonction définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{x^3 - 4}{4x + 4}$ et C_f sa courbe représentative.

- 1. Étudier la parité de f.
- 2. Déterminer la dérivée de f.
- 3. On considère maintenant la fonction g définie sur \mathbb{R} par $g(x) = 2x^3 + 3x^2 + 4$.
 - (a) Dresser le tableau de variations de g sur \mathbb{R} .
 - (b) Calculer g(-2) puis en déduire le tableau de signes de g(x) sur \mathbb{R} .
- 4. Déduire des questions précédentes le tableau de variations de f sur $\mathbb{R} \setminus \{-1\}$. Les limites de f ne sont pas demandées.
- 5. Déterminer l'équation réduite de la tangente à C_f au point d'abscisse 0, notée T_0 . Étudier la position relative de C_f par rapport à T_0 .
- 6. Représenter l'allure de \mathcal{C}_f dans un repère du plan judicieusement choisi.

Exercice 4 - Une équation fonctionnelle

Déterminer toutes les fonctions f définies sur $\mathbb R$ telles que :

$$\forall x, y \in \mathbb{R}, f(x)f(y) - f(xy) = x + y$$