

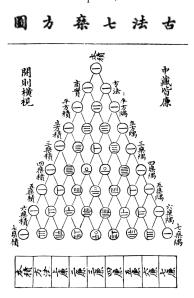
8

CALCUL COEFFICIENTS BINOMIAUX

Introduction...

Les coefficients binomiaux étaient déjà connus et utilisés autour des Xème et XIème siècles en Orient et au Moyen-Orient. La plus ancienne illustration existante de leur représentation en triangle est due à Hui YANG (1238-1298, chinois). Ses travaux portaient sur les carrés magiques, ainsi que sur la recherche des racines carrées et des racines cubiques.

Ce triangle, dont on donne une représentation ci-dessous fut ensuite utilisé par des mathématiciens arabes dans les débuts de l'algèbre. A Blaise Pascal (1623-1662, français), nous devons leur étude complète; et ce fameux triangle porte aujourd'hui son nom.



Pour bien démarrer...

1 #	Soit $n \in \mathbb{N}^*$. Rappeler la définition de $n!$.
2 #	Soient $a,b\in\mathbb{R}$. Donner une forme développée de : $(a+b)^3$.
3 #	Soient $a,b\in\mathbb{R}$. Donner une forme développée de : $(a+b)^4$.
4 #	Soient $a,b\in\mathbb{R}$. Donner une forme développée de : $(a+b)^5$.
5#	Soit E un ensemble à 4 éléments. 1. Quel est le cardinal de $\mathcal{P}(E)$? 2. Combien $\mathcal{P}(E)$ contient-il de singletons? De parties à 2 éléments? De parties à 3 éléments?

Coefficients binomiaux

Partie à k éléments d'un ensemble à n éléments & coefficients binomiaux

Définitions 1

Soient $n \in \mathbb{N}^*$ et E un ensemble à n éléments. Soit $k \in [0; n]$.

D1# On appelle **partie de** E à *k* éléments un sous-ensemble de E constitué de *k* éléments.

D2# On note $\binom{n}{k}$ le nombre de parties de E à k éléments.

Exemples 1

E1 Le nombre de paires de délégués possibles choisis au hasard dans une classe de 27 étudiants est égal à $\binom{27}{2}$

E2 Pour calculer $\binom{3}{2}$, considérons un ensemble E = $\{a,b,c\}$ à 3 éléments et déterminons le nombre de parties de E à 2 éléments

Les parties de E à deux éléments sont :

Conclusion:
$$\binom{3}{2}$$
 =

E3 Pour tout $n \in \mathbb{N}^*$:

$$\binom{n}{0} =$$

$$\binom{n}{n}$$
 =

$$\binom{n}{1}$$
 =

$$\binom{n}{0} = \qquad \qquad ; \qquad \binom{n}{n} = \qquad \qquad ; \qquad \binom{n}{1} = \qquad \qquad ; \qquad \binom{n}{n-1} =$$

On voit l'ampleur de la tâche si on souhaite, avec cette simple définition, calculer $\binom{17}{9}$... Voyons donc deux propriétés sur les coefficients binomiaux : la deuxième est une relation de récurrence qui va ensuite nous permettre d'obtenir une expression explicite de $\binom{n}{\iota}$

I.2 CALCULS SUR LES COEFFICIENTS BINOMIAUX

Propriété 1 - symétrie des coefficients binomiaux

Pour tous $n \in \mathbb{N}$, $k \in [0; n]$:

$$\binom{n}{k} = \binom{n}{n-k}$$

DÉMONSTRATION : Soient $n \in \mathbb{N}$ et $k \in [0; n]$. Considérons E un ensemble à n éléments. L'objectif est alors de montrer qu'il y a autant de parties de E à k éléments que de parties à n-k éléments.

C'est le cas, puisqu'à chaque partié de E à k éléments, on peut associer une unique partie de E à n-k éléments : son complémentaire. Îl y a donc autant de parties de E à k éléments que de parties de E à n-k éléments.

Conclusion: pour tous $n \in \mathbb{N}$, $k \in [0; n]$, $\binom{n}{k} = \binom{n}{n-k}$

Propriété 2 - relation de Pascal

Pour tous $n \in \mathbb{N}^*$, $k \in [0; n-1]$:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Démonstration : Soit $n \in \mathbb{N}^*$ et E un ensemble à n+1 éléments.

Soit $k \in [0; n-1]$. Notons E_{k+1} l'ensemble des parties de E à k+1 éléments et fixons a un élément de E. L'ensemble E_{k+1} peut alors se décomposer en deux sous-ensembles disjoints de la sorte :

$$\mathsf{E}_{k+1} = \mathsf{A}_{k+1} \cup \mathsf{B}_{k+1}$$

où A_{k+1} est l'ensemble des parties de E à k+1 éléments qui contiennent a; et B_{k+1} l'ensemble des parties de E à k+1éléments qui ne contiennent pas a.

Naturellement, l'union est disjointe puisqu'un ensemble ne peut à la fois contenir a et ne pas le contenir. Ainsi :

$$Card(E_{k+1}) = Card(A_{k+1}) + Card(B_{k+1})$$

Or:

• Card(
$$E_{k+1}$$
) = $\binom{n+1}{k+1}$;

On ne tient pas compte de l'ordre d'écriture des éléments dans un ensemble; et les éléments sont deux à deux distincts.

EN GROS...

Constituer une partie de E à k éléments c'est choisir k éléments distincts de E.

POUR INFO...

Par convention :

$$\bullet \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$

• si
$$k > n$$
, alors $\binom{n}{k} = 0$.

• Puisque les parties appartenant à A_{k+1} contiennent a, constituer une partie appartenant à A_{k+1} équivaut à ne choisir plus que k éléments de E distincts de a; ce qui équivaut à choisir k éléments dans $E \setminus \{a\}$, qui est un ensemble à n éléments. Il y a donc $\binom{n}{k}$ telles parties possibles.

Autrement dit : Card $(A_{k+1}) = \binom{n}{k}$

• Puisque les parties appartenant à B_{k+1} ne contiennent pas a, constituer une partie appartenant à B_{k+1} équivaut à choisir k+1 éléments de E distincts de a; ce qui équivaut à choisir k+1 éléments dans $E \setminus \{a\}$, qui est un ensemble à n éléments. Il y a donc $\binom{n}{k+1}$ telles parties possibles.

Autrement dit : Card $(A_{k+1}) = \binom{n}{k+1}$.

Conclusion: pour tous $n \in \mathbb{N}^*$, $k \in [0; n]$, $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$.

Application: triangle de Pascal

n k	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

- IMPORTANT! -

On voit alors l'intérêt de la relation de Pascal, qui fournit un algorithme de calcul des coefficients binomiaux...

Application: Lien factorielle & Coefficients binomiaux

Propriété 3 - Expression explicite des coefficients binomiaux

Pour tous $n \in \mathbb{N}$ et $k \in [0; n]$:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

X ATTENTION!

Nous n'avons pas défini j! si j est négatif; cette relation n'a donc pas de sens que si $k \in [0, n]$.

Démonstration :

EXEMPLE 2

Pour tout $n \in [2; +\infty[$:

$$\binom{n}{2} =$$

II FORMULE DU BINÔME DE NEWTON

Voyons maintenant une formule qui fait apparaître les coefficients binomiaux... Formule qui généralise la très fameuse identité remarquable : $(a + b)^2 = a^2 + ab + b^2$.

Théorème 1 - formule du binôme de Newton

Pour tous réels a, b et tout $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Puisque $(a+b)^n = (b+a)^n$, on a également :

Démonstration :

*