

Exercices du chapitre 17 Dérivabilité & convexité des fonctions

Un bon exercice serait de démontrer les formules de dérivations usuelles (somme, produit, inverse, quotient, composée) et généraliser celles qui peuvent l'être (somme, produit) pour des dérivées n-ième...

•000 Exercice 1 - Dérivabilité en un point

Pour chaque fonction donnée, étudier sa dérivabilité en a.

1.
$$f: x \mapsto e^{-x} \sqrt{x}$$
 en $a = 0$

2.
$$f: x \longmapsto \frac{x}{1+|x|}$$
 en $a = 0$

3.
$$f: x \longmapsto x\sqrt{x}$$
 en $a = 0$

4.
$$f: x \mapsto \begin{cases} \frac{x^2}{2} + 1 & \text{si } x < 0 \\ e^x - x & \text{si } x \ge 0 \end{cases}$$
 en $a = 0$

5.
$$f: x \mapsto \begin{cases} x^2 & \text{si } x \le 1 \\ e^{x-1} & \text{si } x > 1 \end{cases}$$
 en $a = 1$

5.
$$f: x \mapsto \begin{cases} x^2 & \text{si } x \le 1 \\ e^{x-1} & \text{si } x > 1 \end{cases}$$
 en $a = 1$
6. $f: x \mapsto \begin{cases} x^2 & \text{si } x \le 0 \\ xe^{-1/x} & \text{si } x > 0 \end{cases}$ en $a = 0$

• 000 EXERCICE 2 - LIMITES USUELLES AVEC DES TAUX D'ACCROISSEMENT...

1. Rappeler et redémontrer :
$$\lim_{x\to 0} \frac{\ln(1+x)}{x}$$
 et $\lim_{x\to 0} \frac{e^x-1}{x}$.

2. Soit
$$\alpha > 0$$
. Étudier la limite suivante : $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$

3. Étudier la limite des fonctions
$$x \mapsto \frac{\ln(1+x)}{x^2}$$
, $x \mapsto \frac{e^x - 1}{x^2}$, $x \mapsto \frac{e^x - 1}{\sqrt{x}}$ et $x \mapsto \frac{e^{\sqrt{x}} - 1}{x}$ en 0.

•••• EXERCICE 3 - AVEC DES TAUX D'ACCROISSEMENT...

Justifier que la fonction $f: x \mapsto \frac{\ln(1+x^2)}{x}$ est prolongeable par continuité sur \mathbb{R} .

EXERCICE 4 - PROLONGEMENT \mathcal{C}^1

Démontrer que la fonction $f: x \mapsto x^2 \ln(x)$ est prolongeable en une fonction de classe \mathcal{C}^1 sur $[0; +\infty[$. Est-elle deux fois dérivable en 0?

•••• Exercice 5 - Dérivée n-ième

Considérons la fonction f définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = xe^{2x}$.

- 1. Justifier que f est C^{∞} sur \mathbb{R} .
- 2. Donner les valeurs des réels a_0, b_0, a_1, b_1 tels que :

$$\forall x \in \mathbb{R}, \ f(x) = (a_0x + b_0)e^{2x}$$
; $f'(x) = (a_1x + b_1)e^{2x}$

3. Démontrer que pour tout $n \in \mathbb{N}$, il existe deux réels a_n, b_n tels que :

$$\forall x \in \mathbb{R}, \ f^{(n)}(x) = (a_n x + b_n)e^{2x}$$

On précisera les relations entre a_{n+1} , b_{n+1} , a_n et b_n .

- 4. Déterminer le terme général de (a_n) .
- 5. On considère la suite (c_n) définie par : $\forall n \in \mathbb{N}$, $c_n = \frac{b_n}{2^n}$. Établir une relation de récurrence sur (c_n) , puis déterminer le terme
- **6.** En déduire, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, l'expression de $f^{(n)}(x)$.
- 7. Retrouver le résultat précédent à l'aide de la formule de Leibniz.

•••• EXERCICE 6 - DÉRIVÉE *n*-IÈME

Considérons la fonction f définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = (x^2 + x)e^{2x-1}$.

- 1. Justifier que f est C^{∞} sur \mathbb{R} .
- 2. Démontrer que pour tout $n \in \mathbb{N}$, il existe trois réels a_n, b_n, c_n tels que :

$$\forall x \in \mathbb{R}, \ f^{(n)}(x) = (a_n x^2 + b_n x + c_n)e^{2x-1}$$

On précisera les relations entre a_{n+1} , b_{n+1} , a_n et b_n .

- 3. Comment pourrait-on maintenant en déduire les termes généraux des suites (a_n) , (b_n) et (c_n) ?
- 4. Déterminer, pour tout $n \in \mathbb{N}$, l'expression de $f^{(n)}$ en utilisant la formule de Leibniz.

•••• EXERCICE 7 - IAF & SUITE RÉCURRENTE

On considère les fonctions $f: x \mapsto 2 - \frac{1}{2} \ln(x)$ et $g: x \mapsto f(x) - x$.

On considère également la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1. Dresser le tableau de variations complet de g sur $]0;+\infty[$.
- 2. Prouver que l'équation g(x) = 0 admet une unique solution sur $]0; +\infty[$. On la note α .
- 3. Justifier que $\alpha \in [1; e]$.
- 4. Étudier le sens de variations de f sur $]0;+\infty[$.
- 5. Démontrer que pour tout $n \in \mathbb{N}$, $1 \le u_n \le e$.
- 6. Démontrer que : $\forall x \in [1;e], |f'(x)| \le \frac{1}{2}$ puis que : $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \le \frac{1}{2}|u_n \alpha|$.
- 7. En déduire que : $\forall n \in \mathbb{N}$, $|u_n \alpha| \le \frac{e-1}{2^n}$; puis conclure que (u_n) converge et préciser sa limite.

•••• EXERCICE 8 - IAF & SUITE RÉCURRENTE

On considère la fonction $f: x \mapsto x - 2 + e^{-x}$. On nomme C_f sa représentation graphique dans un repère orthonormé.

- 1. Dresser le tableau de variations complet de f sur \mathbb{R} .
- 2. Justifier que C_f coupe l'axe des abscisses en exactement deux points d'abscisses α et β , le premier étant positif, le deuxième étant négatif. Prouver que $\alpha \in]1,2[$.
- 3. On considère la fonction $g: x \mapsto 2 e^{-x}$ et la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = g(u_n)$ pour tout entier naturel n.
 - **3.a.** Montrer que pour tout réel x, on a : g(x) = x si et seulement si f(x) = 0.
 - **3.b.** Montrer que la suite (u_n) est bornée par 1 et 2.
 - 3.c. Établir que pour tout réel x appartenant à $[1,2]:0\leq g'(x)\leq \frac{1}{\rho}$. En déduire $\forall n\in\mathbb{N},\ |u_{n+1}-\alpha|\leq \frac{1}{\rho}|u_n-\alpha|$.
 - 3.d. Démontrer que pour tout entier naturel $n: |u_n \alpha| \le \frac{1}{a^n}$.
 - 3.e. Déterminer la limite de (u_n) .
 - 3.f. Résoudre l'inéquation $\frac{1}{n^2} \le 10^{-5}$ et interpréter le résultat. Donnée : $\ln(10) \simeq 2,3$.

•••• EXERCICE 9 - SÉRIES DE RIEMANN & DE BERTRAND

- 1. Considérons la fonction $f: x \mapsto \ln(\ln(x))$.
 - 1.a. Dresser le tableau de variations complet de f sur son ensemble de définition.
 - **1.b.** Démontrer que pour tout $x \in [2; +\infty[, f(x+1) f(x) \le \frac{1}{x \ln(x)}]$
 - 1.c. En déduire que la série $\sum_{k>2} \frac{1}{k \ln(k)}$ est divergente.
- 2. Soit f une fonction définie et dérivable sur \mathbb{R}_*^+ telle que f' est positive et strictement décroissante sur \mathbb{R}_*^+ .
 - **2.a.** Montrer que : $\forall x \in [2, +\infty[, f(x+1) f(x) < f'(x) < f(x) f(x-1).$
 - 2.b. Déterminer alors une condition nécessaire et suffisante de convergence de la série $\sum f'(k)$.
 - 2.c. Applications. Étudier la nature des séries suivantes : $\sum_{k>1} \frac{1}{k^{\alpha}}$ et $\sum_{k>2} \frac{1}{k \ln(k)^{\alpha}}$ selon les valeurs de $\alpha > 0$.

•••• Exercice 10 - Étude de fonctions

Pour chacune des fonctions ci-dessous :

- déterminer son ensemble de définition
- étudier sa parité
- dresser son tableau de variations complet sur son ensemble de définition
- étudier sa convexité

1.
$$f: x \longmapsto \frac{x}{x^2 + 3}$$

2. $f: x \longmapsto e^x + e^{-x}$

2.
$$f: x \longmapsto e^x + e^{-x}$$

3. $f: x \longmapsto e^x - e^{-x}$

4.
$$f: x \mapsto x \ln(x) - x^2$$

$$5. \ f: x \longmapsto x^2 \ln(x)$$

$$6. \ f: x \longmapsto \frac{\ln(x)}{x}$$

7.
$$f: x \longmapsto x^2 - x \ln(x) - 1$$

•ooo Exercice 11 - C'est faux!

Les affirmations suivantes sont fausses. Proposer des contre-exemples pour les infirmer.

- 1. Si f' est convexe, alors f est convexe.
- 2. Si f est continue et convexe sur [a;b] avec f(a) = f(b) = 0, alors f est positive sur l'intervalle [a;b].

- 3. Si f''(a) = 0, alors C_f est traversée par sa tangente en A(a; f(a)).
- 4. Si f est convexe et g est concave, alors f + g est convexe.

•ooo Exercice 12 - Position relative

On considère la fonction f définie sur \mathbb{R}_*^+ par : $\forall x \in \mathbb{R}_*^+$, $f(x) = 3x - 3x \ln(x)$.

On note C_f la courbe représentative de f dans un repère orthonormé et T_1 la tangente à C_f au point d'abscisse 1.

Étudier la position relative de C_f par rapport à T_1 .

• 000 EXERCICE 13 - Propagation d'un virus...

On considère que le nombre d'individus infectés par un certain virus, exprimé en centaines, est modélisé par la fonction N définie sur l'intervalle [0;60] par $N(t) = t^2 e^{-0.05t} + 1$, où t est le temps écoulé depuis le 1^{er} janvier 2020, exprimé en jours.

Au bout de combien de jours la vitesse de croissance du nombre d'individus infectés a-t-elle diminué?

•••• EXERCICE 14 - AVEC LA CONVEXITÉ

- 1. 1.a. En utilisant la convexité d'une fonction judicieusement choisie, démontrer que pour tout $x \in \mathbb{R}^+$, $e^x \ge 1 + x + \frac{x^2}{2}$.
 - **1.b.** Démontrer que pour tout $x \in \mathbb{R}^+$, $e^x \ge 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$.
- 2. Démontrer que pour tout $x \in \mathbb{R}^+$, $\ln(1+x) \ge x \frac{x^2}{2}$.

•••• EXERCICE 15 - RÉCIPROQUE D'UNE FONCTION CONVEXE CROISSANTE

Soit f une fonction définie sur un intervalle I, strictement croissante, convexe et bijective. Déterminer la convexité de f^{-1} sur f(I).

•••• EXERCICE 16 - INÉGALITÉS DE CONVEXITÉ

- 1. Démontrer que pour tous $a, b \in \mathbb{R}$: $e^{\frac{a+b}{2}} \le \frac{e^a + e^b}{2}$.
- 2. Démontrer que la fonction $x \mapsto \ln(\ln(x))$ est concave sur]1; $+\infty$ [. En déduire que pour tous $a, b \in$]1; $+\infty$ [, $\ln\left(\frac{a+b}{2}\right) \ge \sqrt{\ln(a)\ln(b)}$.

•••• EXERCICE 17 - MOYENNES ARITHMÉTIQUE & GÉOMÉTRIQUE

1. Soit f une fonction concave sur un intervalle I. Démontrer que pour tout $n \in \mathbb{N}^*$ et tous $a_1, a_2, ..., a_n \in \mathbb{I}$:

$$f\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \ge \frac{f(a_1) + f(a_2) + \dots + f(a_n)}{n}$$

2. En déduire que pour tout $n \in \mathbb{N}^*$ et tous réels strictement positifs $a_1, a_2, ..., a_n$:

$$\sqrt[n]{a_1 a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n}$$

•••• Exercice 18 - Lien signe de f' & variation de f

Soit f une fonction dérivable sur un intervalle I telle que pour tout $x \in I$, f'(x) > 0. L'objectif est de démontrer que f est strictement croissante sur I.

Considérons alors $a, b \in I$ tels que a < b.

- 1. Dans un premier temps, montrons que $f(a) \le f(b)$. Raisonnons pas l'absurde et supposons que f(a) > f(b). Considérons les suites (a_n) et (b_n) définies par $a_0 = a$, $b_0 = b$ et pour tout $n \in \mathbb{N}$:
 - si $f\left(\frac{a_n + b_n}{2}\right) < f(a_n)$, alors $a_{n+1} = a_n$ et $b_{n+1} = \frac{a_n + b_n}{2}$;
 - si $f\left(\frac{a_n+b_n}{2}\right) \ge f(a_n)$, alors $a_{n+1} = \frac{a_n+b_n}{2}$ et $b_{n+1} = b_n$.
 - **1.a.** Démontrer que pour tout $n \in \mathbb{N}$: $f(a_n) > f(b_n)$.
 - **1.b.** Démontrer que pour tout $n \in \mathbb{N}$, $b_n a_n = \frac{b-a}{2^n}$.
 - 1.c. En déduire que les suites (a_n) et (b_n) sont adjacentes. Notons $c \in [a;b]$ la limite commune de ces deux suites.
 - **1.d.** Justifier que pour $x \in [a;b]$ suffisamment proche de c, f(x) f(c) et x c ont même signe.
 - **1.e.** Déterminer alors le signe de $f(c) f(a_n)$ et celui de $f(b_n) f(c)$ pour tout $n \in \mathbb{N}$.
 - 1.f. Aboutir à une contradiction puis conclure.
- 2. Montrons enfin, en raisonnant par l'absurde, que nécessairement f(a) < f(b).

•••• EXERCICE 19 - TAF!

- **1. Résultat préliminaire 1.** On considère une fonction f définie sur [a;b], dérivable sur]a;b[telle que f possède un maximum en $c \in]a;b[$.
 - **1.a.** En revenant à la définition, démontrer que $f_g'(c) \ge 0$ et $f_d'(c) \le 0$.

1.b. En déduire que f'(c) = 0.

Le raisonnement est le même si f(c) est un minimum.

On a ainsi démontré le résultat : si f est dérivable sur]a; b[et possède un extremum en $c \in$]a; b[, alors f'(c) = 0.

- 2. **Résultat préliminaire** 2. On considère une fonction f continue sur [a;b], dérivable sur [a;b], telle que f(a) = f(b).
 - 2.a. Que dire de f'(c) pour tout $c \in]a;b[$ si f est constante? Dans la suite de l'exercice, on supposera que f n'est pas constante.
 - 2.b. Représenter l'allure d'une telle fonction.
 - 2.c. Justifier que f possède un minimum et un maximum sur [a;b], et que l'un des deux au moins est différent de f(a).
 - 2.d. En déduire qu'il existe un réel $c \in]a;b[$ tel que f'(c) = 0.

On a ainsi démontré que si f est une fonction continue sur [a;b], dérivable sur [a;b], telle que f(a) = f(b), alors il existe $c \in]a;b[$ tel que f'(c) = 0. C'est le **théorème de Rolle**.

- 3. Théorème des accroissements finis. Soit f une fonction continue sur [a;b], dérivable sur [a;b[.
 - 3.a. Déterminer une fonction g, définie sur [a;b] et dérivable sur [a;b] telle que :

$$f'(c) = \frac{f(b) - f(a)}{b - a} \iff g'(c) = 0$$

3.b. Conclure.

•••• EXERCICE 20 - ÉGALITÉ DE TAYLOR-LAGRANGE ET DÉMONSTRATIONS SUR LA CONVEXITÉ

Soit f une fonction de classe C^2 sur un intervalle I.

- 1. Soient $a, b \in I$. Posons $g: x \mapsto f(b) f(x) (b-x)f'(x) \frac{(b-x)^2}{2}K$, où K est un réel.
 - **1.a.** Donner g(b).
 - **1.b.** Déterminer K de sorte que g(a) = 0.
 - 1.c. Démontrer que si g(a) = 0, alors qu'il existe $c \in]a; b[$ tel que g'(c) = 0.
- 2. Déduire de la question précédente que pour tous $a, b \in I$ tels que a < b:

$$\exists c \in]a; b[\ / \ f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(c)$$

Ce résultat est connu sous le nom d'égalité de Taylor-Lagrange à l'ordre 2.

3. Démontrer que si $a \in I$:

$$\left.\begin{array}{l} f\text{ est convexe sur I} \\ f'(a) = 0 \end{array}\right\} \Longrightarrow \left(f(a)\text{ est un minimum (global) de }f\text{ sur I}\right)$$

4. Établir un résultat analogue si f est concave.

•••• EXERCICE 21 - Une équation fonctionnelle...

L'objectif de l'exercice est de déterminer toute les fonctions f, définies et continues sur $\mathbb R$ telles que :

- f est dérivable en 0,
- $\forall x, y \in \mathbb{R}$, $f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)}$. On notera (\mathcal{R}) cette relation.

On admet que si g est une fonction dérivable et bijective sur un intervalle I, alors g^{-1} est dérivable en tout $x \in g(I)$ tel que $g'(x) \neq 0$ et :

$$(g^{-1})'(x) = \frac{1}{g' \circ g^{-1}(x)}$$

- 1. Montrer que pour tout nombre réel $t:-1 \le \frac{2t}{1+t^2} \le 1$.
- 2. Trouver toutes les fonctions constantes vérifiant la relation (\mathcal{R}) .
- 3. On suppose désormais que f n'est pas constante sur \mathbb{R} .
 - **3.a.** Montrer que pour tout $x \in \mathbb{R}$, $-1 \le f(x) \le 1$.
 - **3.b.** Démontrer que f(0) = 0.
 - 3.c. Démontrer que la fonction f est impaire.
 - 3.d. Nous allons maintenant démontrer, en raisonnant par l'absurde, que pour tout $x \in \mathbb{R}$, $f(x) \neq 1$. Supposons alors qu'il existe un réel x_0 tel que $f(x_0) = 1$. Pour tout $n \in \mathbb{N}$, on pose $u_n = f\left(\frac{x_0}{2^n}\right)$.

3.d.i. Déterminer $\lim_{n\to+\infty} u_n$.

3.d.ii. Démontrer que pour tout $n \in \mathbb{N}$, $u_n = \frac{2u_{n+1}}{1 + u_{n+1}^2}$ puis en déduire que pour tout $n \in \mathbb{N}$, $u_n = 1$.

3.d.iii. Conclure.

- **3.e.** En déduire que pour tout $x \in \mathbb{R}$, -1 < f(x) < 1.
- 3.f. Notons a = f'(0). Démontrer que f est dérivable sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $f'(x) = a(1 f(x)^2)$.
- 3.g. Étudier les variations de f sur \mathbb{R} selon les valeurs de a; puis justifier que f admet des limites en $\pm \infty$ que l'on déterminera.
- **3.h.** Justifier que f est bijective de \mathbb{R} dans]-1;1[.
- 3.i. Démontrer que la fonction f^{-1} est dérivable sur]-1;1[et que pour tout $y \in]-1,1[$, $(f^{-1})'(y)=\frac{\frac{1}{a}}{1-n^2}$.
- 3.j. En déduire l'expression de $f^{-1}(y)$ pour tout $y \in]-1$; 1[puis celle de f(x) pour tout $x \in \mathbb{R}$.
- 4. Conclure.