

Exercices du Chapitre 19

Intégrales sur un segment

• 000 EXERCICE 1 - RECHERCHE DE PRIMITIVES

Dans chaque cas, donner une primitive F de f.

1.
$$f: x \mapsto 3x^2 + x - 1$$

2.
$$f: x \longmapsto e^x + \frac{1}{x}$$

3.
$$f: x \longmapsto e^{-x} + \frac{1}{x^2}$$

4.
$$f: x \mapsto e^{-2x} - \frac{3}{x^3}$$

5.
$$f: x \mapsto \frac{1}{3}e^{-3x} + \frac{1}{x^4}$$

6.
$$f: x \longmapsto 2xe^{x^2}$$

7.
$$f: x \longmapsto xe^{-x^2}$$

8.
$$f: x \longmapsto \frac{3x^2 + 2x}{\sqrt{x^3 + x^2 + 1}}$$

9.
$$f: x \longmapsto \frac{1}{x \ln(x)}$$

10.
$$f: x \longmapsto \frac{x}{\sqrt{1+x^2}}$$

11.
$$f: x \mapsto \frac{1}{x^2} e^{1/x}$$

12.
$$f: x \mapsto \frac{2x}{x^2+3}$$

13.
$$f: x \mapsto (2x+1)^4$$

14.
$$f: x \longmapsto \frac{-x}{(x^2+1)^2}$$

15.
$$f: x \longmapsto \frac{1}{x \ln(x)^3}$$

16.
$$f: x \longmapsto \frac{1}{x} \left(\ln(x) \right)^2$$

17.
$$f: x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

18.
$$f: x \longmapsto 3^x$$

19.
$$f: x \longmapsto e^{-e^{-x}-x}$$

• 000 EXERCICE 2 - PRIMITIVE AVEC CONDITION

Dans chaque cas, donner l'unique primitive F de f telle que $F(x_0) = y_0$.

1.
$$f: x \mapsto e^{-x} + \frac{2}{x}$$
, $x_0 = 1$, $y_0 = 1$

2.
$$f: x \mapsto \frac{1}{2}e^{3x} + 2x^4 - 1$$
, $x_0 = 0$, $y_0 = 0$

• 000 EXERCICE 3 - CALCUL D'INTÉGRALES

Justifier l'existence des intégrales suivantes et les calculer :

1.
$$\int_{10}^{0} e^{-x} dx$$

2.
$$\int_{1}^{2} \frac{1}{x^4} dx$$

3.
$$\int_{-2}^{-1} \frac{1}{x^4} dx$$

4.
$$\int_{3}^{4} \frac{x-1}{x^2} dx$$

5.
$$\int_{n}^{n+1} \frac{1}{4x} dx \text{ pour } n \in \mathbb{N}^*$$

$$6. \int_{1}^{2} \frac{1}{(2x+1)^2} dx$$

7.
$$\int_{1}^{10} \frac{1}{k} dx \text{ avec } k \in \mathbb{R}^*$$

8.
$$\int_{-7}^{7} (x^3 + x) dx$$

9.
$$\int_{e}^{e^2} \frac{1}{x \ln(x)} dx$$

$$10. \int_{e}^{e^2} \frac{\ln(x)}{x} dx$$

11.
$$\int_{e}^{e^2} \frac{\left(\ln(x)\right)^3}{x} dx$$

12.
$$\int_{-1}^{1} x e^{-x^2} dx$$

13.
$$\int_0^1 e^{-\lambda x} dx$$
, pour $\lambda > 0$

14.
$$\int_0^1 \frac{x}{x+1} dx$$

15.
$$\int_{1}^{2} \frac{1}{x(x+1)} dx$$

16.
$$\int_0^1 \frac{dx}{e^x + 1}$$

•••• EXERCICE 4 - IPP

A l'aide d'une ou plusieurs intégrations par parties, calculer les intégrales suivantes :

1.
$$\int_{1}^{2} (2-x)e^{-x} dx$$

2.
$$\int_{-1}^{1} xe^{2x} dx$$

3.
$$\int_{1}^{e} \ln(x) dx$$

4.
$$\int_{0}^{e^2} x^2 \ln(x) dx$$

5.
$$\int_0^1 x^2 e^x dx$$

6.
$$\int_{0}^{x} te^{-\lambda t} dt$$
, pour $x, \lambda > 0$

•••• EXERCICE 5 - CHANGEMENT DE VARIABLE

A l'aide d'un changement de variable (parfois indiqué), calculer les intégrales suivantes :

1.
$$\int_0^1 x\sqrt{2x+1}dx$$

2.
$$\int_{0}^{1} \frac{\ln(1+e^{x})}{1+e^{-x}} dx \ (t=1+e^{x})$$

3.
$$\int_0^1 \frac{dx}{\sqrt{1+e^x}} \ (t = \sqrt{1+e^x})$$

4.
$$\int_{0}^{3} \frac{x}{1+\sqrt{x+1}} dx \ (t=\sqrt{x+1})$$

$$5. \int_0^1 \frac{e^x}{1 + e^{-x}} dx$$

$$6. \int_1^e \frac{\ln(x)e^{-\ln(x)^2}}{x} dx$$

• 000 EXERCICE 6 - SUITES D'INTÉGRALES

Dans chaque cas, étudier la monotonie de la suite (I_n) définie sur \mathbb{N}^* :

1.
$$I_n = \int_0^n e^{-x^2} dx$$

$$3. \ I_n = \int_0^1 \frac{x^n}{1+x} dx$$

5.
$$I_n = \int_1^2 (\ln(x))^n dx$$

2.
$$I_n = \int_0^1 x^n e^{-x} dx$$

4.
$$I_n = \int_0^{1/n} \frac{x}{1+x^2} dx$$

6.
$$I_n = \int_0^1 x e^{-n^2 x} dx$$

• 000 EXERCICE 7 - Suites d'intégrales

Considérons la suite $(I_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}$, $I_n=\int_0^1\ln(1+x^n)dx$.

- 1. Dériver la fonction $F: x \mapsto (1+x)\ln(1+x) (1+x)$.
- 2. Calculer I₀ et I₁.
- 3. Démontrer : $\forall n \in \mathbb{N}, 0 \le I_n \le \frac{1}{n+1}$.
- 4. Conclure que (I_n) converge et déterminer sa limite.

•••• EXERCICE 8 - SUITES D'INTÉGRALES

Pour $n \in \mathbb{N}$, on considère l'intégrale $I_n = \int_0^1 \frac{x}{1+x^n} dx$.

- 1. Calculer I_0 , I_1 et I_2 .
- 2. Démontrer que la suite (I_n) est bornée.
- 3. Étudier la monotonie de la suite (I_n) et en déduire qu'elle est convergente.
- 4. Démontrer que pour tout $n \in \mathbb{N}$, $\int_0^1 x(1-x^n)dx \le I_n \le \int_0^1 xdx$. Donner alors $\lim_{n \to +\infty} I_n$.

•••• Exercice 9 - Suites d'intégrales

Pour tout $n \in \mathbb{N}$, on considère l'intégrale $I_n = \int_0^1 x^n (1-x)^n dx$.

- 1. Étudier les variations de la suite (I_n) .
- 2. Pour tout $n \in \mathbb{N}$, donner un encadrement de I_n entre deux entiers. En déduire que (I_n) converge.
- 3. Étudier la fonction $f: x \mapsto x(1-x)$ sur [0;1] puis en déduire que pour tout $n \in \mathbb{N}$, $I_n \leq \frac{1}{4^n}$.
- 4. En déduire la limite de la suite (I_n) .

•••• Exercice 10 - Suites d'intégrales

On pose, pour $n \in \mathbb{N}$, $I_n = \frac{1}{n!} \int_0^1 (1-t)^n e^t dt$.

- 1. Calculer I₀.
- 2. Démontrer que pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{e}{n!}$
- 3. En déduire la limite de la suite (I_n) .
- 4. Montrer, à l'aide d'une intégration par parties, que : $\forall n \in \mathbb{N}$, $I_{n+1} = I_n \frac{1}{(n+1)!}$
- 5. Établir : $\forall n \in \mathbb{N}$, $I_n = e \sum_{k=0}^n \frac{1}{k!}$. En déduire la convergence de la série $\sum \frac{1}{k!}$ et donner sa somme.

•••• Exercice 11 - Interversion limite / intégrale

On considère, pour tout $n \in \mathbb{N}$, la fonction $f_n : x \longmapsto 2nxe^{-nx^2}$.

Que dire de l'égalité suivante : $\lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to +\infty} f_n(x) dx$?

•••• EXERCICE 12 - FONCTION DÉFINIE PAR UNE INTÉGRALE

Considérons F: $x \mapsto \int_{1}^{x^2} \frac{e^{-t}}{t} dt$.

- 1. Justifier que F est définie sur \mathbb{R}^* .
- 2. Étudier la parité de F.
- 3. Dresser le tableau de signes de F.
- 4. Justifier que F est de classe C^1 sur $]-\infty;0[$ et sur $]0;+\infty[$ et déterminer sa dérivée.
- 5. En déduire le tableau de variations de F sur son ensemble de définition.
- 6. Justifier que pour tout $t \in]0;1]$, on a $\frac{e^{-1}}{t} \le \frac{e^{-t}}{t} \le \frac{1}{t}$. En déduire un encadrement de F(x) pour $x \in]0;1]$ puis $\lim_{\substack{x>0 \ 0}} F(x)$.

•••• Exercice 13 - Fonction définie par une intégrale

Considérons F: $x \mapsto \int_{1}^{x} \frac{e^{t}}{t} dt$.

- 1. Justifier que F est définie sur $]0;+\infty[$.
- 2. Étudier le signe de F(x) pour $x \in]0; +\infty[$.
- 3. Justifier que F est de classe C^1 sur $]0;+\infty[$ et déterminer sa dérivée.
- 4. Démontrer que pour tout $x \in]0;1]$, $F(x) \le e^x \ln(x)$. En déduire que F possède une limite en 0 et la déterminer.
- 5. Dresser le tableau de variations complet de F sur $]0;+\infty[$.

••••• Exercice 14 - Fonction définie par une intégrale On considère la fonction $g: x \mapsto \int_{-x}^{x} \frac{e^{-t}}{1+t^2} dt$.

- 1. Justifier que la fonction g est définie sur \mathbb{R} .
- 2. Démontrer que la fonction g est impaire.
- 3. Étudier le signe de g(x) pour $x \in \mathbb{R}$.
- 4. Justifier que g est de classe C^1 sur $[0; +\infty[$ et déterminer g'(x) pour $x \in \mathbb{R}$.
- 5. En déduire les variations de g sur \mathbb{R} (les limites ne sont pas demandées).
- 6. Justifier que g admet une limite en $+\infty$.
- 7. Démontrer que pour tout $x \ge 0$, $g(x) \ge \frac{e^x e^{-x}}{1 + x^2}$. En déduire $\lim_{x \to +\infty} g(x)$ puis $\lim_{x \to -\infty} g(x)$.

•••• Exercice 15 - Fonction définie par une intégrale

Considérons F: $x \mapsto \int_0^x \frac{dt}{1+t^2}$

- 1. Étudier la parité de F, son signe ainsi que ses variations.
- 2. Démontrer que pour tout $x \ge 1$, $\int_{1}^{x} \frac{dt}{1+t^2} \le 1$. Que peut-on en déduire sur le comportement asymptotique de F en $\pm \infty$?
- 3. On pose, pour $x \in \mathbb{R}_{*}^{+}$, $G(x) = F(x) + F\left(\frac{1}{x}\right)$.
 - **3.a.** Justifier que G est dérivable sur \mathbb{R}_*^+ et déterminer G'(x). Que peut-on dire?
 - **3.b.** En déduire que $\lim_{x \to +\infty} F(x) = 2F(1)$.

•••• Exercice 16 - Fonction définie par une intégrale

On définit la fonction f sur [0;1] par : f(0) = 0, $f(1) = \ln(2)$ et pour tout $x \in]0;1[$, $f(x) = \int_{-1}^{x^2} \frac{dt}{\ln(t)}$.

- 1. Montrer que f est bien définie sur [0;1].
- 2. 2.a. Soit $x \in]0;1[$. Calculer $\int_{x}^{x^2} \frac{dt}{t \ln(t)}$.
 - 2.b. En déduire que pour tout $x \in]0;1[:x^2 \ln(2) \le f(x) \le x \ln(2)$.
 - 2.c. En déduire que f est continue sur [0;1].
- 3. Montrer que f est de classe \mathcal{C}^1 sur]0;1[puis déterminer ses variations.

•••• Exercice 17 - Fonction définie par une intégrale

Notons f la fonction définie sur \mathbb{R}^+ par : $f(0) = \frac{1}{2}$ et pour tout x > 0, $f(x) = \frac{2}{x^2} \int_0^x \frac{t}{e^t + 1} dt$.

- 1. 1.a. Montrer que : $\forall x \in]0; +\infty[, \forall t \in [0;x], \frac{1}{e^x + 1} \le \frac{1}{e^t + 1} \le \frac{1}{2}.$
 - **1.b.** Établir alors que, pour tout réel x strictement positif, on a : $\frac{1}{e^x + 1} \le f(x) \le \frac{1}{2}$.
 - 1.c. En déduire que f est continue en 0.
- 2. Étudier les variations de f sur \mathbb{R}^+ .
- 3. Déterminer la limite de f en $+\infty$.

•••• EXERCICE 18 - SÉRIE HARMONIQUE ALTERNÉE

L'objectif de cet exercice est d'établir la convergence de la série $\sum_{k \sim 1} \frac{(-1)^k}{k}$ et de déterminer sa somme.

- 1. Calculer, pour $t \in \mathbb{R}^-$ et pour $n \in \mathbb{N}^*$: $\sum_{k=1}^{n} t^{k-1}$.
- 2. En déduire que pour tout $x \in \mathbb{R}^-$, $\sum_{k=1}^n \frac{x^k}{k} = -\ln(1-x) + \int_x^0 \frac{t^n}{1-t} dt$.

- 3. Démontrer que $\lim_{n \to +\infty} \left(\int_{-1}^{0} \frac{t^n}{1-t} dt \right) = 0.$
- 4. En déduire la convergence de la série $\sum_{k>1} \frac{(-1)^k}{k}$ et de déterminer sa somme.

•••• EXERCICE 19 - COMPARAISON SÉRIES / INTÉGRALES

Soit f une fonction continue, positive et décroissante sur $[2; +\infty[$. Posons, pour tout $x \in [2; +\infty[$, $F(x) = \int_2^x f(t)dt$; ainsi que, pour tout $n \in [2; +\infty[$, $S_n = \sum_{i=0}^n f(k)$.

- 1. Justifier que F possède une limite en $+\infty$. De même pour $(S_n)_{n\geq 2}$.
- 2. Soit $k \in [2; +\infty[$. Établir : $f(k+1) \le \int_{k}^{k+1} f(t)dt \le f(k)$.
- 3. En déduire : $\forall n \in [2; +\infty[, S_{n+1} S_2 \le F(n+1) \le S_n]$.
- 4. Conclure sur le résultat suivant :

la série $\sum_{n\geq 2} f(n)$ est convergente si, et seulement si, F possède une limite finie en $+\infty$.

- 5. Applications.
 - 5.a. Redémontrer le théorème sur les séries de Riemann.
 - 5.b. Donner une condition nécessaire et suffisante, portant sur le réel α , pour que la série $\sum_{n\geq 2} \frac{1}{n\ln(n)^{\alpha}}$ soit convergente.

•••• Exercice 20 - Sommes de Riemann

Soit f une fonction de classe C^1 sur un intervalle [a;b]. Soient également :

$$I = \int_a^b f(t)dt \quad \text{et} \quad \forall n \in \mathbb{N}^*, \ S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f(x_k), \ \text{où} \ \forall k \in \llbracket 0; n \rrbracket, \ x_k = a + k \frac{b-a}{n}$$

- 1. Justifier que |f'| admet un maximum sur [a;b]. On note alors $M = \max_{t \in [a;b]} |f'(t)|$.
- 2. Démontrer que pour tout $n \in \mathbb{N}^*$, $I = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(t) dt$.
- 3. Soit $n \in \mathbb{N}^*$ et $k \in [0; n-1]$. Vérifier que $\int_{x_k}^{x_{k+1}} f(x_k) dt = \frac{b-a}{n} f(x_k)$.
- 4. En déduire que pour tout $n \in \mathbb{N}^*$, $I S_n = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(t) f(x_k)) dt$.
- 5. Montrer que pour tout $t \in [x_k; x_{k+1}], |f(t) f(x_k)| \le M|t x_k| \le M \frac{b-a}{n}$.
- 6. En déduire que pour tout $n \in \mathbb{N}^*$, $|I S_n| \le M \frac{(b-a)^2}{n}$ ainsi que la limite de la suite $(S_n)_{n \in \mathbb{N}^*}$.
- 7. **Application**. Écrire un programme Python qui permet d'obtenir une valeur approchée à 10^{-3} près de $\int_0^1 e^{t^2} dt$.

•••• EXERCICE 21 - FORMULE DE TAYLOR AVEC RESTE INTÉGRAL

1. Soient f une fonction de classe C^{∞} sur un intervalle I de $\mathbb R$ ainsi que $a \in I$. Établir :

$$\forall x \in I, \ \forall n \in \mathbb{N}, \ f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_{a}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

- 2. Que devient la formule si I contient 0 et que l'on prend a = 0?
- 3. Applications.
 - 3.a. 3.a.i. Soit $x \in \mathbb{R}_*^+$. Démontrer : $\forall n \in \llbracket \lfloor x \rfloor, +\infty \llbracket, \frac{x^n}{n!} \le \left(\frac{x}{\lfloor x \rfloor + 1}\right)^{n-\lfloor x \rfloor} \frac{x^{\lfloor x \rfloor}}{\lfloor x \rfloor!}$
 - 3.a.ii. En déduire, pour tout $x \in \mathbb{R}$, $\lim_{n \to +\infty} \frac{|x|^n}{n!}$.
 - 3.a.iii. Conclure que pour tout $x \in \mathbb{R}$, la série $\sum \frac{x^n}{n!}$ est convergente, de somme égale à e^x .
 - 3.b. Montrer que pour tout $x \in]-1;1[$, la série $\sum_{n\geq 1} \frac{(-1)^{n-1}x^n}{n}$ est convergente, de somme égale à $\ln(1+x)$.