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(CHARTREUX GRAND CLASSIQUE

OUTILS DE MESURE DE LA QUALITE D'UN ESTIMATEUR

Dans ce document, nous introduisons des outils, tous devenus hors programme, qui permettent de mesurer la qualité
d'un estimateur.

On considere une variable aléatoire X définie sur un certain espace probabilisé ainsi que (X, ..., X,) un n-échantillon
de X (avec n € N*).

BIAIS ET RISQUE QUADRATIQUE D'UN ESTIMATEUR

L'idée générale est les réalisations de lestimateur T, soient proches de 6. Pour mesurer l'écart entre T, et 6, on peut
utiliser les quantités suivantes : T, — 6, | T, — 0], (T, — 0)°..
Mais bien évidemment, ce qui nous intéresse le plus est l'écart moyen... D'oli les définitions suivantes :

DEFINITIONS 1 BIAIS, RISQUE QUADRATIQUE

Soit 7, un estimateur de 6.
Vocabulaire

e Si bg(T,) = 0, on dit que

l'estimateur T, est sans biais.

e St lim bg(T,) =0, on dit que

n—+o00
l'estimateur T, est asymptotique-
ment sans biais.

St T, admet une espérance, le biais de lUestimateur T,, noté bg(T,), est le réel défint par :
be(T,) = Ee(T, — 0)

St T, admet une variance, le risque quadratique de Uestimateur T,, noté ry(7T,), est le réel défini par :

re(Ts) = Eo((T, — 0)°)

PROPRIETES 1

Avec les notations précédentes :
St T, admet une espérance, alors : by(T,) = Eo(T,) — 6.

Remarque
St T, admet une variance, alors : rg(T,) = Vo(T,) + (be(Tn))z» El(;ﬂ)est Sa(n7$_ E)tais, alors
ro(Ty) = Vo(T,).

FDEMONSTRATION :
P1. Supposons que T, posséde une espérance. Ainsi :
bo(T,) = Eo(T, — 0)

linéarité de l'espérance
=Ey(T,)— 6 J

P2. Supposons que T, posséde une variance. Ainst :
ro(T,) = Eo((T, — 6)°)
= E@(T2 — 20T, + 92)

J linéarité de l'espérance, toutes existent

= Eo(T;) — zeEe(Tﬂ) + 6
J formule de Koenig-Huygens
= Ve(T,) + (Es ) —ZQEQ(Tn)-‘rQ
= Vo(T,) + 9
@ ) ( J point précédent
= Vo(To) + (bl )

i

Dans l'idéal, on cherche a obtenir un estimateur dont le biais et le risque quadratique sont les plus proches de 0
possible, l'idéal étant un estimateur sans biais et de variance minimale.. Mais celui-ct n'existe pas toujours, ou n'est pas
simple a trouver.
De fagon générale, pour comparer deux estimateurs :

e s'ils ont méme biais, on préférera celut de risque quadratique minimal,

e sinon, on pourra parfois préférer un estimateur biaisé a un estimateur sans biais si son risque quadratique est
plus faible que la variance de lestimateur sans biats.

EXEMPLE 1

On suppose n > 2. Notons V,, = Z(Xk X,)? la variance empirique de X.
k=1
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e Justifions que V), posséde une espérance et déterminons-la.

n

1 _
V=D (X=X
k=1

! Y (X7 - 20X+ X))
n
k=1

T, 1< s
—E;Xk—zxn;;)(k-i—xn

,I n .
=Y XX
n
k=1

Or:
v pour tout k € [1; n], X admet une espérance car X admet une variance;

v X, admet une espérance (car X, admet une variance comme combinaison linéaire de telles variables
aléatoires).

Par conséquent, V, est une combinaison linaire de variables aléatoires admettant une espérance; V, admet
donc une espérance et :

,] n .
E(V,) = E (HZXE—Xf
k=1

) linéarité de l'espérance, toutes existent

1 & —2
=) E(X)-EX)) -
k=1 ) les Xk ont méme loi que X

1 ¢ ~—2
=5 L EX—EX)
2

= E(X?) — E(X,)

) formule de Koenig-Huygens

= V(X) + E(X)Z —V(Xy) — E(Yn) o o Remarque
n—1 J E(Xn) = E(X) et V(X)) = EV(X) Je ne détaille pas ces deux cal-
= n V(X) culs, tres classiques.

. . P . ' z n
Conclusion : la variance empirique est un estimateur de V(X) d'espérance

V(X).

e Donnons, a partir de V,, un estimateur V/ qui soit un estimateur sans biais de V(X).
Posons, pour n > 2 :

n—1 n—1

,] n o
v, = v, =Y (X XY
k=1

v V! est un estimateur de V(X) (car X, ..., X, sont indépendantes et de méme loi; et que lexpression de
V7 ne fait pas apparattre V(X)),
v et d'apres le calcul précédent :

E(V2) = V(X)
De nombreux logiciels infor-
matiques (et des calculatrices)
1 n . utilisent lestimateur V, (variance
Conclusion : —— Z(Xk — X,)? est un estimateur sans biais de V(X). empirique corrigée) pour la va-
n—1 = riance plutdt que V.

ESTIMATEUR CONVERGENT

Confusion d’objets | —

DEFINITION 2 ESTIMATEUR CONVERGENT

On verra parfois la confusion
) ) L entre estimateur et suite d'estima-
Soit (T,)pen+ une suite d'estimateurs de 6. teurs.

On dit que (T,)sen+ est convergente (ou plus simplement que lestimateur T, est convergent) lorsque :

Autrement dit : ——
Vo €0, Ve >0, ”ETDO IP@(HT” - 9| = 5]) =0 &7 est convergent ssi T, LN

—+00
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PROPRIETE 2 CONDITION SUFFISANTE D'ESTIMATEUR CONVERGENT

Soit T, un estimateur de 6 admettant une variance.

St lim rg(7,) =0, alors T, est convergent.
n—+oQ

*
rDE/MONSTRATION . Supposons que llT re(T,) = 0. Montrons : Ve > 0, liT IP@(HTn -0 > 6]) =0.

Soit € > 0. Soit n € N*.
La variable aléatoire (T, — 0)* :

v est a valeurs positives,
v admet une espérance (car T, admet une variance).

Ainsi, d'apres l'inégalité de Markov :

Va >0, Py([(T, — 0) > a]) < M
Avec a =€>>0:
IP@([(TH _ 9)2 2 52}) < rQizn)

Mais, par stricte croissance de /~ sur R™ et comme |g| = & (car £ > 0) :
(To = 6)* > & = [T, — 6] > €]

On a ainsi établi :
re(T,)

Vne N, 0<Py([|T, — 6] > ¢]) < =

Or lim rg(7,) = 0. Donc, par théoreme dencadrement :

n—+oo

lLTOOIPg(HF, —6l>¢])=0

n—

Conclusion : st lim rg(7,) =0, alors T, est convergent.

n—+o00
j

Un estimateur sans biais garantit 'absence d'erreur en moyenne, mais peut produire de trés mauvaises estimations
ponctuelles. Au contraire, un estimateur convergent, biaisé ou non, sera d'autant plus fiable que la taille de l'échantillon
est grande. En général, on préfere ces derniers.

PROPRIETE 3 QUALITE DE LA MOYENNE EMPIRIQUE

Soient X une variable aléatoire admettant une espérance et une variance ainsi que (Xj, ..., X;) un n-échantillon
de X.
La moyenne empirique de X, ..., X, est un estimateur sans biais et convergent de E(X).

*
DEMONSTRATION :

e Remarquons déja que :
v Xi, ..., X, sont indépendantes et suivent la méme loi,
v/ X, est fonction de Xj, ..., X, dont l'expression ne fait pas apparaitre E(X).

Conclusion : X, est un estimateur de E(X).

e Soit n € N*. La variable aléatoire X, est une combinaison linéaire de variables aléatoires admettant une
espérance, elle admet donc une espérance. Puis :

o ,I n
EX,)=E|[-Y X
( ) ( n ; ¢ J linéarité de l'espérance, toutes existent
,I n
= — E(X
n ; (X J vk € [1:n], E(X4) = E(X)
= E(X)

Conclusion : X, est un estimateur sans biais de E(X).

e Enfin, puisque les variables aléatoires X, ..., X, sont indépendantes, de méme espérance et de méme variance
(car ont la méme lot), d'apres la loi faible des grands nombres :

Ve >0, lim (X, —E(X)| > ¢]) =0

Conclusion : X, est un estimateur convergent de E(X).

]
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PROPRIETE 4 QUALITE DE LA VARIANCE EMPIRIQUE CORRIGEE Remarque

Cet estimateur permettrait d'ob-
Soient X une variable aléatoire admettant un moment d'ordre 4 ainsi que (Xj, ..., X,) un n-échantillon de X. tenir une estimation du second

La variance empirique corrigée de X, ..., X, (V, de lexemple 1) est un estimateur sans biais et convergent de parametre d'une loi normale par

exemple.
V(X).
o
DEMONSTRATION :
e On vérifie déja que V! est un estimateur de V(X).
e Par construction E(V)) = V(X) : V, est sans biats.
e Ftona:
(V) = VIV) = = TE(X— XY — VX
o " n(n—1)
Ainst © lim rg(V)) = 0 et on conclut sur la convergence en utilisant l'inégalité de Markov et le théoréeme
n—+oo
d'encadrement... ) .
. = Pour info... ——
< On pourra aller sentratner sur le
sujet ESSEC 2009 E2 : ici.
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https://www.annales-prepa.fr/wp-content/uploads/Sujet-Maths-2E-ESSEC-2009.pdf

