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Grand classique
Outils de mesure de la qualité d’un estimateur

Dans ce document, nous introduisons des outils, tous devenus hors programme, qui permettent de mesurer la qualitéd’un estimateur.On considère une variable aléatoire X définie sur un certain espace probabilisé ainsi que (X1, ..., Xn) un n-échantillonde X (avec n ∈ N∗).
Biais et risque quadratique d’un estimateur
L’idée générale est les réalisations de l’estimateur Tn soient proches de θ. Pour mesurer l’écart entre Tn et θ, on peututiliser les quantités suivantes : Tn − θ, |Tn − θ|, (Tn − θ)2 ,...Mais bien évidemment, ce qui nous intéresse le plus est l’écart moyen... D’où les définitions suivantes :

Définitions 1 Biais, risque quadratique

Soit Tn un estimateur de θ.
D1 Si Tn admet une espérance, le biais de l’estimateur Tn , noté bθ (Tn), est le réel défini par :

bθ (Tn) = Eθ (Tn − θ)
D2 Si Tn admet une variance, le risque quadratique de l’estimateur Tn , noté rθ (Tn), est le réel défini par :

rθ (Tn) = Eθ
((Tn − θ)2)

• Si bθ (Tn) = 0, on dit quel’estimateur Tn est sans biais.
• Si lim

n→+∞
bθ (Tn) = 0, on dit quel’estimateur Tn est asymptotique-

ment sans biais.

Vocabulaire

Si Tn est sans biais, alors
rθ (Tn) = Vθ (Tn).

Remarque

Propriétés 1

Avec les notations précédentes :
P1 Si Tn admet une espérance, alors : bθ (Tn) = Eθ (Tn) − θ.
P2 Si Tn admet une variance, alors : rθ (Tn) = Vθ (Tn) + (bθ (Tn))2 .

⋆ Démonstration :
P1. Supposons que Tn possède une espérance. Ainsi :

bθ (Tn) = Eθ (Tn − θ) linéarité de l’espérance= Eθ (Tn) − θ

P2. Supposons que Tn possède une variance. Ainsi :
rθ (Tn) = Eθ

((Tn − θ)2)= Eθ
(
T 2

n − 2θTn + θ2) linéarité de l’espérance, toutes existent= Eθ (T 2
n ) − 2θEθ (Tn) + θ2 formule de Koenig-Huygens= Vθ (Tn) + (Eθ (Tn))2 − 2θEθ (Tn) + θ2

= Vθ (Tn) + (Eθ (Tn) − θ
)2 point précédent= Vθ (Tn) + (bθ (Tn))2

⋆

Dans l’idéal, on cherche à obtenir un estimateur dont le biais et le risque quadratique sont les plus proches de 0possible, l’idéal étant un estimateur sans biais et de variance minimale... Mais celui-ci n’existe pas toujours, ou n’est passimple à trouver.De façon générale, pour comparer deux estimateurs :
• s’ils ont même biais, on préférera celui de risque quadratique minimal,
• sinon, on pourra parfois préférer un estimateur biaisé à un estimateur sans biais si son risque quadratique estplus faible que la variance de l’estimateur sans biais.

Exemple 1

On suppose n ⩾ 2. Notons Vn = 1
n

n∑
k=1 (Xk − Xn)2 la variance empirique de X .
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• Justifions que Vn possède une espérance et déterminons-la.
Vn = 1

n

n∑
k=1 (Xk − Xn)2

= 1
n

n∑
k=1 (X 2

k − 2XnXk + Xn
2)

= 1
n

n∑
k=1 X 2

k − 2Xn
1
n

n∑
k=1 Xk + Xn

2
Xn = 1

n

n∑
k=1 Xk= 1

n

n∑
k=1 X 2

k − Xn
2

Or :
✓ pour tout k ∈ J1; nK, X 2

k admet une espérance car X admet une variance ;
✓ Xn

2 admet une espérance (car Xn admet une variance comme combinaison linéaire de telles variablesaléatoires).Par conséquent, Vn est une combinaison linaire de variables aléatoires admettant une espérance ; Vn admetdonc une espérance et :

Je ne détaille pas ces deux cal-culs, très classiques.
Remarque

E(Vn) = E

(1
n

n∑
k=1 X 2

k − Xn
2) linéarité de l’espérance, toutes existent

= 1
n

n∑
k=1 E(X 2

k ) − E(Xn
2) les Xk ont même loi que X

= 1
n

n∑
k=1 E(X ) − E(Xn

2)
= E(X 2) − E(Xn

2) formule de Koenig-Huygens= V(X ) + E(X )2 − V(Xn) − E(Xn)
E(Xn) = E(X ) et V(Xn) = 1

n V(X )= n − 1
n V(X )

Conclusion : la variance empirique est un estimateur de V(X ) d’espérance n − 1
n V(X ).

• Donnons, à partir de Vn , un estimateur V ′
n qui soit un estimateur sans biais de V(X ).Posons, pour n ⩾ 2 :

V ′
n = n

n − 1Vn = 1
n − 1 n∑

k=1 (Xk − Xn)2
✓ V ′

n est un estimateur de V(X ) (car X1, ..., Xn sont indépendantes et de même loi ; et que l’expression de
V ′

n ne fait pas apparaître V(X )),
✓ et d’après le calcul précédent :

E(V ′
n) = V(X )

Conclusion : 1
n − 1 n∑

k=1 (Xk − Xn)2 est un estimateur sans biais de V(X ).
De nombreux logiciels infor-matiques (et des calculatrices)utilisent l’estimateur V ′

n (variance
empirique corrigée) pour la va-riance plutôt que Vn .

☞ Pour info...

Estimateur convergent
On verra parfois la confusionentre estimateur et suite d’estima-teurs.

Confusion d’objets !Définition 2 Estimateur convergent

Soit (Tn)n∈N∗ une suite d’estimateurs de θ.On dit que (Tn)n∈N∗ est convergente (ou plus simplement que l’estimateur Tn est convergent) lorsque :
∀θ ∈ Θ, ∀ε > 0, lim

n→+∞
Pθ
([|Tn − θ| ⩾ ε]) = 0 Tn est convergent ssi Tn

P−→
n→+∞

θ

Autrement dit :
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Propriété 2 Condition suffisante d’estimateur convergent

Soit Tn un estimateur de θ admettant une variance.Si lim
n→+∞

rθ (Tn) = 0, alors Tn est convergent.
⋆ Démonstration : Supposons que lim

n→+∞
rθ (Tn) = 0. Montrons : ∀ε > 0, lim

n→+∞
Pθ
([|Tn − θ| ⩾ ε]) = 0.Soit ε > 0. Soit n ∈ N∗ .La variable aléatoire (Tn − θ)2 :

✓ est à valeurs positives,
✓ admet une espérance (car Tn admet une variance).Ainsi, d’après l’inégalité de Markov :

∀a > 0, Pθ
([(Tn − θ)2 ⩾ a]) ⩽ Eθ

(
Tn − θ))

aAvec a = ε2 > 0 :
Pθ
([(Tn − θ)2 ⩾ ε2]) ⩽ rθ (Tn)

ε2Mais, par stricte croissance de √. sur R+ et comme |ε| = ε (car ε > 0) :
[(Tn − θ)2 ⩾ ε2] = [|Tn − θ| ⩾ ε]

On a ainsi établi :
∀n ∈ N∗, 0 ⩽ Pθ

([|Tn − θ| ⩾ ε]) ⩽ rθ (Tn)
ε2Or lim

n→+∞
rθ (Tn) = 0. Donc, par théorème d’encadrement :

lim
n→+∞

Pθ
([|Tn − θ| ⩾ ε]) = 0

Conclusion : si lim
n→+∞

rθ (Tn) = 0, alors Tn est convergent.
⋆

Un estimateur sans biais garantit l’absence d’erreur en moyenne, mais peut produire de très mauvaises estimationsponctuelles. Au contraire, un estimateur convergent, biaisé ou non, sera d’autant plus fiable que la taille de l’échantillonest grande. En général, on préfère ces derniers.
Propriété 3 Qualité de la moyenne empirique

Soient X une variable aléatoire admettant une espérance et une variance ainsi que (X1, ..., Xn) un n-échantillonde X .La moyenne empirique de X1, ..., Xn est un estimateur sans biais et convergent de E(X ).
⋆ Démonstration :

• Remarquons déjà que :
✓ X1, ..., Xn sont indépendantes et suivent la même loi,
✓ Xn est fonction de X1, ..., Xn dont l’expression ne fait pas apparaître E(X ).

Conclusion : Xn est un estimateur de E(X ).
• Soit n ∈ N∗ . La variable aléatoire Xn est une combinaison linéaire de variables aléatoires admettant uneespérance, elle admet donc une espérance. Puis :

E(Xn) = E

(1
n

n∑
k=1 Xk

)
linéarité de l’espérance, toutes existent

= 1
n

n∑
k=1 E(Xk )

∀k ∈ J1; nK, E(Xk ) = E(X )= E(X )
Conclusion : Xn est un estimateur sans biais de E(X ).

• Enfin, puisque les variables aléatoires X1, ..., Xn sont indépendantes, de même espérance et de même variance(car ont la même loi), d’après la loi faible des grands nombres :
∀ε > 0, lim

n→+∞
P
([|Xn − E(X )| ⩾ ε]) = 0

Conclusion : Xn est un estimateur convergent de E(X ).
⋆
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Cet estimateur permettrait d’ob-tenir une estimation du secondparamètre d’une loi normale parexemple.
RemarquePropriété 4 Qualité de la variance empirique corrigée

Soient X une variable aléatoire admettant un moment d’ordre 4 ainsi que (X1, ..., Xn) un n-échantillon de X .La variance empirique corrigée de X1, ..., Xn (V ′
n de l’exemple 1) est un estimateur sans biais et convergent de

V(X ).
⋆ Démonstration :

• On vérifie déjà que V ′
n est un estimateur de V(X ).

• Par construction E(V ′
n) = V(X ) : Vn’ est sans biais.

• Et on a :
rθ (V ′

n) = V(V ′
n) = ... = 1

nE
((X − E(X ))4)− n − 3

n(n − 1)V(X )2
Ainsi : lim

n→+∞
rθ (V ′

n) = 0 et on conclut sur la convergence en utilisant l’inégalité de Markov et le théorèmed’encadrement...
⋆ On pourra aller s’entraîner sur lesujet ESSEC 2009 E2 : ici.

☞ Pour info...
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https://www.annales-prepa.fr/wp-content/uploads/Sujet-Maths-2E-ESSEC-2009.pdf

