

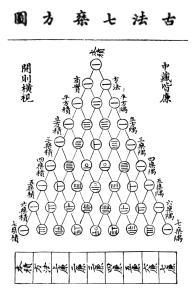
5

CALCUL COEFFICIENTS BINOMIAUX

Introduction...

Les coefficients binomiaux étaient déjà connus et utilisés autour des $X^{\text{ème}}$ et $XI^{\text{ème}}$ siècles en Orient et au Moyen-Orient. La plus ancienne illustration existante de leur représentation en triangle est due à Hui YANG (1238-1298, chinois). Ses travaux portaient sur les carrés magiques, ainsi que sur la recherche des racines carrées et des racines cubiques.

Ce triangle, dont on donne une représentation ci-dessous fut ensuite utilisé par des mathématiciens arabes dans les débuts de l'algèbre. À Blaise Pascal (1623-1662, français), nous devons leur étude complète; et ce fameux triangle porte aujourd'hui son nom.



Pour bien démarrer...

- 1. Soit $n \in \mathbb{N}^*$. Rappeler la définition de n!.

 2. Soient $a, b \in \mathbb{R}$. Donner une forme développée de : $(a + b)^3$.
- 3. Soient $n \in \mathbb{N}^*$ et E un ensemble à n éléments.
 - Rappeler la définition de $\mathcal{P}(E)$.
 - Quel est le cardinal de $\mathcal{P}(E)$?
 - Combien $\mathcal{P}(E)$ contient-il de singletons?

Coefficients binomiaux

DÉFINITIONS 1

Soient $n \in \mathbb{N}^*$ et E un ensemble à n éléments. Soit $k \in [0; n]$

- D1 On appelle partie de E à k éléments un sous-ensemble de E constitué de k éléments.
- On note $\binom{n}{k}$ le nombre de parties de E à k éléments.

™ Rappel...

On ne tient pas compte de l'ordre d'écriture des éléments dans un ensemble; et les éléments sont deux à deux distincts

En gros...

Constituer une partie de E à kéléments c'est choisir k éléments distincts de E

Exemples 1

- E1 Le nombre de paires de délégués possibles choisis au hasard dans une classe de 40 étudiants est égal à 2
- E2 Pour calculer $\binom{3}{2}$, considérons un ensemble $E = \{a, b, c\}$ à 3 éléments et déterminons le nombre de parties de E à 2 éléments.

Les parties de E à deux éléments sont :

Pour info...

- Par convention : $\bullet \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$
- si k > n, alors $\binom{n}{k} = 0$.

E3 Soit $n \in \mathbb{N}^*$. On considère un ensemble E à n éléments. On a :

- $\binom{n}{0} = 1$; en effet,
- $\binom{n}{n} = 1$; en effet,
- $\binom{n}{1} = n$; en effet,
- **E4** Soient $n \in [2; +\infty]$ et E un ensemble à n éléments.
 - Déterminons le nombre de couples (x, y) avec $x, y \in E$ et $x \neq y$.

Important!

Cet exemple et la démonstration de la propriété 1 doivent être bien travaillés pour mettre en place des raisonnements classiques sur du dénombrement.

• En dénombrant autrement le nombre de couples (x,y) avec $x,y \in E$ et $x \neq y$, déduisons-en la valeur de $\binom{n}{2}$

Utilisons la méthode mise en place dans le dernier exemple pour obtenir une expression explicite des coefficients binomiaux...

Propriété 1

Expression explicite des coefficients binomiaux

Pour tous $n \in \mathbb{N}$ et $k \in [0; n]$:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

X Attention !

Nous n'avons pas défini j! si j est négatif; cette relation n'a donc pas de sens que si $k \in [0; n]$

* DÉMONSTRATION :

*

Propriété 2

Symétrie des coefficients binomiaux

Pour tous $n \in \mathbb{N}$, $k \in [0; n]$:

$$\binom{n}{k} = \binom{n}{n-k}$$

Soient $n \in \mathbb{N}$ et $k \in [0; n]$.

1.

^{*} DÉMONSTRATION : Donnons deux démonstrations de ce résultat : une calculatoire en utilisant la propriété 1; et une autre combinatoire.

2.

*

Propriété 3 Relation de Pascal

Pour tous $n \in \mathbb{N}^*$, $k \in [0; n-1]$:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

* DÉMONSTRATION : Là encore, donnons deux démonstrations de ce résultat : une calculatoire en utilisant la propriété 1; et une autre combinatoire.

Soient $n \in \mathbb{N}^*$ et $k \in [0; n-1]$.

1.

2.

APPLICATION: TRIANGLE DE PASCAL

À l'aide de la relation de Pascal, on complète le tableau ci-dessous, appelé **triangle de Pascal** dans lequel chaque cas contient une valeur de $\binom{n}{k}$:

n k	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	2	1	0	0	0
3	1	3	3	1	0	0
4	1	4	6	4	1	0
5	1	5	10	10	5	1

Remarque

Les cases bleues traduisent un cas particulier de la relation de Pascal :

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

II Formule du binôme de Newton

Voyons maintenant une formule qui fait apparaître les coefficients binomiaux... Formule qui généralise la très fameuse identité remarquable : $(a + b)^2 = a^2 + ab + b^2$.

Théorème 1

Formule du binôme de Newton

Pour tous réels a, b et tout $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

À retenir...

Puisque $(a + b)^n = (b + a)^n$, on a également :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

* Démonstration :

Exemples 2

Avec la formule du binôme de Newton et le triangle de Pascal :

E1 avec la ligne
$$n = 2$$
:

$$\forall (a, b) \in \mathbb{R}^2, \ (a + b)^2 = a^2 + 2ab + b^2$$

E2 avec la ligne
$$n = 3$$
:

$$\forall (a, b) \in \mathbb{R}^2, (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

E3 avec la ligne
$$n = 4$$
:

$$\forall (a,b) \in \mathbb{R}^2, (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$