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(CHARTREUX

SUITES

GENERALITES & SUITES USUELLES

INTRODUCTION...

Difficile d'étre précis sur lorigine des suites en mathématiques, qui sont trés utilisées en arithmétique et en analyse. En revanche, Leonardo Da Pisa
(= 1180 —1250, italien, plus connu sous le nom de Leonardo Fibonacci) avait déja introduit, en 1202, la célébre suite qui porte son nom via le probleme
suivant : "Quelqu’un a déposé un couple de lapins dans un certain lieu, clos de toutes parts, pour savoir combien de couples seraient issus de cette paire
en une année, car il est dans leur nature de générer un autre couple en un seul mois, et qu'ils enfantent dans le second mois aprés leur naissance.’.
En notant (F,) le nombre de couples de lapins en début du n®™ mois, on obtient :

e [ =1 (initialement, 1 couple de jeunes lapins)

e [, =1 (le couple n'a pas encore procréé, ils ne peuvent que dans le second mois apres leur naissance)

e [5 =2 (le couple initial, plus le nouveau couple engendré en un mois)

e [4 =3 (seul le couple initial a engendré un couple supplémentaire, l'autre étant trop jeune)

o [4 =5 (les 3 couples du mois précédents + un couple par couple capable de procréer : il y en a 2, le couple initial, et celut né il y a 2 mois)
e f5=28.

On obtient ainsti la relation suivante : ¥n € N*, F,, = F,41 + F,, sans oublier les conditions initiales f1 = F, = 1. Un des objectifs de ce chapitre
est de déterminer une expression explicite de F, en fonction de n.

Pour finir, quelques mots sur Fibonacci... Il est un des rares mathématiciens de son époque et son travail a porté a la fois sur la géométrie et sur la
résolution des équations du premier et second degré, mais aussi sur le calcul de racine carrée et cubique. Son influence a également été importante
dans Uintroduction des chiffres arabes en Occident.
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POUR BIEN DEMARRER...
1. Sipour tout n € N, f(n) = 2n? + 3%, que vaut f(n + 1)?

2. Rappeler les régles de calculs sur les puissances.

1

3. Factoriser lexpression x™*' —x" (x € R, n € N).

CHAPITRE 6 - Page 2/13



|  SUITES NUMERIQUES : PREMIERES DEFINITIONS

DEFINITIONS 1 SuITE

Une suite numérique u est une fonction :

u:‘N — R

n +— u(n)=u,
On notera u ou (u,), ou (U,),en une telle suite.
u, est appelé terme de rang n (ou terme d'indice n).

Le premier terme de la suite (souvent up ou uq) est appelé terme initial.

Dans tout ce chapitre, nous ferons comme si toutes les suites étaient définies sur N tout entier. En pratique, ca ne sera
pas toujours le cas. Les énoncés du cours contenant un “pour tout n € N’ seront alors a modifier.

Au fil de l'année, nous allons étudier différentes suites, qui pourront étre définies ainsi :
e explicitement : on donne u, en fonction de n (clest a dire par la donnée du terme général de (u,)nen);

e par une relation de récurrence : un ou plusieurs premiers termes puis une expression d'un terme en fonction d'un
ou de plusieurs termes précédents;

e implicitement;

e on peut aussi définir plusieurs suites imbriquées.

EXEMPLES 1

Suites définies par leur terme général :

1 1 —1)"
e VneN, u,=3n+= e VneN*, v,=—+2" e Vn>2, Wn:Q
3 n n(n+1)
Suites définies par une relation de récurrence :
. U0:1 V():'] o F0:1 et F1:1
VneN, vy =3u,+5 *lvneN, v,-_2 1 Vn €N, Fpo=Foir + F,
Vp +

Suites définies implicitement :

On peut démontrer (grace au théoreme de bijection) que pour tout n € N, l'équation e™" —x = 0 admet une unique
solution dans R, on note a, cette unique solution. On définit ainsi une suite (a,),en dont on peut d'ailleurs dire que
Q= .

Suites imbriquées :

On considere les deux suites (up,)nen et (vy)nen définies par ug = vo =1 et pour tout n € N :

—nx

u, + 3v, )
Upyr = # ' Va1 = —Up + VY

Comme pour les fonctions, il est naturel de définir de nouvelles suites par opérations (quand cela a du sens, et avec
AER):

(Aun) & (o +va) 5 (Unva) (L)

Vi

I REPRESENTATION GRAPHIQUE D'UNE SUITE

Deux cas :

1. Représentation point par point : la représentation de (u,),en est alors l'ensemble des points de coordonnées (n; u,)
dans un repére du plan.
Cela revient a représenter une suite comme une fonction.. On peut faire cela pour toutes les suites, a condition de
calculer un certain nombre de termes.

2. Pour les suites définies par une relation de récurrence d'ordre 1 : il existe une représentation graphique qui permet
aussi de déterminer graphiquement les valeurs des termes de la suite..
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Vocabulaire

Donner le terme général de
(un)nen cest donner 'expres-
sion explicite de u, en fonction
de n.

v Rigueur !

o

u, désigne un terme de la

suite, donc un nombre... Alors

que (Up)nen désigne la suite;
comme pour les fonctions : f est
une fonction, alors que f(x) est un
nombre !

La suite (F,) définie par :
Fo=1 e =1
VneN, Foo=F+F,
est la suite de Fibonacci.




& METHODE 1 ® Si (u,),en est définie sur N par 'Vn € N, u,1 = f(u,)" ol f est une fonction connue :
e Tracer la droite d'équation y = x (premiére bissectrice) ainsi que la courbe de la fonction f.
e Placer la valeur de ug sur l'axe des abscisses.

e Obtenir uq en remarquant que uy = f(up); cest a dire que uy est l'image de ug par f.

Reporter sur l'axe des abscisses la valeur de uq en utilisant la premiere bissectrice.

Réitérer jusqu'a en avoir marre...

[Il' VARIATIONS DES SUITES

DEFINITIONS 2 SUITE CROISSANTE / DECROISSANTE

D1 | La suite (u,)yen est croissante lorsque : Vn € N, up1 = U,
D2 | La suite (u,)yen est strictement croissante lorsque : Vn € N, u,.1 > u,
D3| La suite (u,)yen est décroissante lorsque : Vn € N, u,1 < U,

D4 | La suite (u,),en est strictement décroissante lorsque : Vn € N, v, < u,

D5 | La suite (u,)yen est constante lorsque : Vn € N, v, = u,

Dans tous les cas, il faudra comparer u, et u,.1 pour toutes les valeurs de n.

|Q MEeTHODE 2 # Pour étudier les variations d’'une suite, on peut étudier, pour tout n € N, le signe de v, — u,.

| EXEMPLES 2 I

Considérons la suite (u,),en définie par :

n
VneN, u, =
n+1
Etudions les variations de la suite (Un)nen.
Considérons la suite (u,),en définie par :
3
Vn e N, u, = 27

Etudions les variations de la suite (Un)nen.

Soit (uy)nen une suite telle que

Vn €N, u,,+q:u,27—un+1
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C

S — — —
S+ - - = -

Vocabulaire
Les suites monotones sont les
suites qui ne changent pas de
variations.

— & Meéthode !

e On pourrait aussi comparer
Un+1
Up
que, pour tout n € N, u, est dif-
férent de 0 et de signe constant...

Ce n'est donc, en pratique, pas
plus simple et je ne procéderat
jamais ainsi.

o Parfois, énoncé demandera
d'établir les variations par récur-
rence, en démontrant par exemple
YneN, u, < upgr'

a 1: faut-il encore s'assurer




e Etudions les variations de la suite (Un)nen-

e Que dire de la suite (u,)pen dans le cas ol ug =17

V' MAJORATION & MINORATION

DEFINITIONS 3 SUITE MAJOREE / MINOREE / BORNEE

Soit M € R. La suite (u,),en est majorée par M lorsque : Vn € N, u, < M.
Le réel M est alors un majorant de (u,)nen-

La suite (u,)sen est majorée lorsque : IM € R/ Vn € N, u, < M.

Soit m € R. La suite (u,),en est minorée par m lorsque : Vn € N, v, = m.
Le réel m est alors un minorant de (u,)nen-

La suite (u,)pen est minorée lorsque : dm € R /Vn €N, u, > M.

La suite (u,),en est bornée lorsqu'elle est a la fois minorée et majorée.

| ExempLES 3 I

Une suite décroissante est majorée par son premier terme; alors qu'une suite croissante est minorée par son

premier terme (se démontre rapidement par récurrence).
El La suite de terme général est majorée par 2.
La suite de terme général est bornée par —1 et 1.
Considérons la suite (u,),en définie par «[ o =0
VneN, U, =~u,+2

Démontrons que (u,)nen est bornée par O et 2.

CHAPITRE 6 - Page 5/13

— v Rigueur !

On dit UN majorant. Car si M
est un majorant de (up)yen, alors
M +1, M+ 2. le sont tous. Par
conséquent, une suite majorée
admet une infinité de majorants !

— X Attention !

4 Quand pour tout n € N, u, < vy,

on dira souvent que la suite (v,)
majore la suite (up).. Mais cela
ne signifie pas que la suite (uy)
est majorée |En effet, par défini-
tion, un majorant / minorant ne
peut pas dépendre de la variable
|




V' SUITES USUELLES

V4 SUITES ARITHMETIQUES & SUITES GEOMETRIQUES

= Rappels...

e Ne changent pas le sens des
inégalités : additionner/soustraire,
multiplier/diviser par un positif et
appliquer une fonction croissante.
e Changent le sens des inéga-
lités : multiplier/diviser par un
négatif et appliquer une fonction
décroissante.

SUITES ARITHMETIQUES SUITES GEOMETRIQUES

DEFINITION il existe un réel r tel que pour tout n € N : il existe un réel g tel que pour tout n € N :

Upyt = Up + T Upt1 =@ x Up

TERME GENERAL A PARTIR DE U VYneN, u, =ug+nr VneN, u, =upq”

1

TERME GENERAL A PARTIR DE U1 VneN* uy,=ui+(n—"1)r Vn e N* u, =u1q""

TERME GENERAL A PARTIR DE U Vn € [p;+ool, up = up+(n—p)r Vn € [p;+ool, up = upq" "

GRAPHIQUEMENT... Suite arithmétique de raison 2 et de 1¢' Suite géométrique de raison 1,5 et de 1°¢

terme —3: terme 1 :
+ +
4 6
+ +
4
2 I i
| > 2t 4 +
1 lo+ 2 3 4 5 6 7
—2 : e e e
-1 o1 2 3 4 5 6
—4 -2

~ Croissance linéaire (points alignés) ~~ Croissance exponentielle

Remarque

En fait, ces relations sont valables
pour tout n € N (saufsi g = 0
pour les suites géométriques,

car alors g~ n'existe pas..) du
moment que (U,),eN est arithmé-
tique / géométrique a partir du
rang 0.

nb de termes

i 1" + dernier terme 1 — raison )
SOMME DE TERMES CONSECU- = nb de termes x —m8M8 ————— =1 terme x —— (si
TIFS 2 1 — raison
raison# 1)

= 1°" terme x nb de termes (si raison= 1)

*
DEMONSTRATION :

e Aucune difficulté pour l'expression des termes généraux, que l'on démontre proprement par récurrence.

e Somme des termes consécutifs d'une suite arithmétique :
Soient r un réel et (u,),en Une suite arithmétique de raison r. Soient p € N et n € [p; +oof. On a :

n

Zuk = Z(up—i—(k—p)r)
k=p

k=p
=) _uptr) (k=p) | |
k=p k=p J Jj =k — p dans la somme de droite
n—p
=(n—p+Nup+r) |
j=0
—p)(n—p+1
:(n—p+1)up+r%
2u, +r(n—p)
= (n — = A
(n—p+1) 5
up 4+ u, +(n—pr
=(n— it S
(h—p+1) 3

2

Dot le résultat voulu.
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Remarque

Je fais le choix d'énoncer ces
formules sans expression mathé-
matique... Mais leur démonstration
le sera. Cela laisse le choix dans
l'apprentissage !

= Rappel...

Pour tous a,b € Z tels que
a<b:

Card([a; b]) =b—a+1




e Somme des termes consécutifs d'une suite géométrique :
Soient g un réel et (u,),en une suite géométrique de raison g. Soient p € N et n € [p; +oof.

* St g =1, alors la suite (u,),en est constante, égale a ug et ainsi :

n n

> =3 u

k=p k=p
=(n—=p+Tug

* Sig+1:
Y =Y ua
k=p
Up iqkip
k=p

n—p

=u, Z q/
j=0

n—p+1

T—q"
1—gq

Dol le résultat.
*

)/':kfp
)q#

Up

& METHODE 3 & Pour montrer qu'une suite (u,),en est arithmétique (resp. géométrique), on cherche généralement
a établir qu'il existe ggch € R tel que que pour tout entier naturel n, u,.1 = u, + gqch (resp. u,41 = u, x qqch). Et
pour cela, on part du membre de gauche pour retrouver le membre de droite.

EXEmPLES 4

E Considérons la suite (u,),en définie par u, = 3n 4+ 7 pour n € N. On reconnalt le terme général de la suite
arithmétique de premier terme ug = 7 et de raison 3.

Considérons les suites (u,)nen et (Vy)nen définies par

up=1,; uy=2
VneN, Upo =201 — Uy + 2

VneN, v, =u,q — U,

Démontrons que la suite (v,),en est arithmétique. Déduisons-en (par sommation) son terme général ainsi que celut
de (Un)neN-
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& METHODE 4 & Pour montrer qu'une suite n'est pas arithmétique (resp. géométrique), la donnée de trois termes
consécutifs suffit!

| EXEMPLE 5 I

Montrons que la suite (u,),en, définie par : ¥Vn € N, u, = 2n + 37, n'est ni arithmétique ni géométrique.

V2  SUITES ARITHMETICO-GEOMETRIQUES

DEFINITION 4 SUITE ARITHMETICO-GEOMETRIQUE

Une suite (u,)yen est arithmético-géométrique lorsqu'il existe deux réels a et b tels que :

VneN, v,y =axu,+b

S 0. alors L . X Attention ! ———
F a =V, alors {a Sqlte (U”)”GN est Cronstaljte‘ ) Hormis ces trois cas, une suite
St b =0, alors la suite (u,),en est géométrique. Nous exclurons ces cas-la dans la suite de notre étude. arithmético-géométrique n'est ni

St a =1, alors la suite (u,),en est arithmétique. arithmétique, ni géométrique.

Objectif : déterminer le terme général des suites arithmético-géométriques.

A l'aide d'observations graphiques, on voit que le point d'intersection entre la droite d'équation y = ax+ b et la premiére

bissectrice a un réle important.. Et puisque a # 1, l'équation x = ax + b admet une unique solution (on parle
—a
de point fixe de la fonction x — ax + b), que nous notons a. Nous avons donc deux informations a ce niveau-la :

VYneN, u,.1=au,+b
a=aa+b

Ce qui donne, en soustrayant ces deux égalités membre a membre :
VneN, u,pg —a=alu, —a)

Ainsi, la suite (u, — a),en est géométrique ; on peut donc déterminer son terme général et en déduire celui de (u,)nen--
Ce qu'il faut retenir :
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& METHODE 5 # Pour déterminer le terme général d’une suite arithmético-géométrique :
e Résoudre l'équation x = ax + b (on note «a la solution ici).
e Poser la suite auxiliaire (v,),en définie par : Vn € N, v, = u, — «a; et vérifier qu'elle est géométrique.

e E£n déduire le terme général de (v,),en puis celut de (uy)pen (0na:Vn €N, u, = v, + a).

| EXEMPLE 6 I

Déterminons le terme général de la suite (u,),en définie par : {

U0:1

1
VneN, Uy = zun+3

V.3 SUITES RECURRENTES LINEAIRES D'ORDRE 2

DEFINITIONS 5 SUITE RECURRENTE LINEAIRE D'ORDRE 2 Remarque ————
Dans le cas ol (a, b) = (0,0), on

a simplement :
Une suite (u,)nen est récurrente linéaire d'ordre 2 lorsqu'il existe deux réels a, b tels que (a, b) # 0 et YneEN, Uy =0

La suite (up)pen est donc nulle a

Vn €N, unp2 = auyyr + bu, partir du rang 2...

L'équation x*> — ax — b = 0 est alors appelée équation caractéristique de la suite (t/,)nen.

Le théoréme suivant va fournir les expressions possibles pour les suites récurrentes linéaires d'ordre 2 :

THEOREME 1

Soient a, b € R tel que (a,b) # 0 et (u,)sen une suite vérifiant : Vn € N, u,o = au,1 + bu,; et soit A le
discriminant associé & l'équation caractéristique x> — ax — b = 0.

1. SLA >0, alors l'équation x> — ax — b = 0 admet deux solutions distinctes x; et x; et :

(e, B) €ER? |¥n €N, u, = ax] + Bx)

2. Si A =0, alors l'équation x*> — ax — b = 0 admet une seule solution xq et : Le cas A < 0 n'est pas au pro-
gramme ; il fait intervenir les tres
3!(0( 3) = R? /V¥nEN, u, = (an + B)X(? fameux nombres complexes, que

nous n'étudierons pas !
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Il est également possible, le ré-
sultat étant donné, de procéder
Supposons que A > 0 et notons x; et x, les deux racines, éventuellement égales, de x — x* — ax — b. par récurrence (double).

*
DEMoNSTRATION : Détaillons-la en plusieurs points.

Remarque ———

1. Exprimons x; 4+ x, et xyx, en fonction de a et b.

n—1
2. Soit n € N*. Simplifions qu”’k’w(uk“ — XqUg).
k=0

3. Considérons la suite (v,),en définie par:¥n € N, v, = u,11—x1u,. Démontrons que la suite (v,),en est géométrique,
puis déduisons-en son terme général.

4. Supposons b = 0. Déduisons des questions précédentes, en distinguant les cas A > 0 et A = 0, le terme général de
la suite (Un)nen-
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5. Que diresi b=07?

Pour compléter :

& METHODE 6 # Pour déterminer le terme général d’une suite récurrente linéaire d'ordre 2 :

Les expressions des termes gé-
, . L . L . . néraux sont identiques si la suite
e Déterminer o et S en utilisant les conditions initiales de (u,),en (qui sont souvent les valeurs de ug et uy) @ il | | et définie qu'a partir d'un cer-

faudra résoudre un petit systeme. tain rang : les valeurs de a et B

s'en trouveront juste changées...
ExempLES 7

La suite de Fibonacci est une suite récurrente linéaire d'ordre 2 d'équation caractéristique x> —x — 1 = 0.
Déterminons le terme général de la suite (u,),en définie par : up =0 uy =1
VneN, u,2 = uUpr + 2u,

e Poser et résoudre l'équation caractéristique associée.
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V.4 SUITES DEFINIES PAR Upiq = f(up)

Cest un cas trés courant dont nous avons déja rencontré des cas particuliers : les suites arithmético-géométriques. En
effet, si (un)nen est une SAG, elle vérifie une relation de la forme u,1 = f(u,), avec f une fonction affine.

Nous avons déja vu comment représenter la suite (u,),en (voir méthode 1); mais son étude sera en général plus
sophistiquée. Nous ne verrons pas de généralités, mais il est bon de retenir que :

& METHODE 7 & Pour étudier une suite (u,),en définie par "Vn € N, v, = f(u,)":

e il faut connattre le mieux possible la fonction f et essayer d'en utiliser les caractéristiques; , .
Cette étude sera complétée et re-

e il va falloir trés certainement raisonner par récurrence (pour justifier que u, existe bien pour tout n, pour étudier | | vue régulierement durant 'année.
les variations de (u,),en, ou pour montrer qu'elle est minorée/bornée..)

EXEMPLE 8

S ) [V o . e ug =1
Considérons la fonction f : x — xe™, définie sur R, ainsi que la suite (u,),en définie par: { 0

VneN, u,p = f(u,)

e Dressons le tableau de variations de f sur R.

e Démontrons par récurrence que : ¥n € N, 0 < v, < 1.

2. - . Remarque ————
e Etudions les variations de la suite (u,),en- 4 On aurait aussi pu démontrer

directement par récurrence :

VneN, 0 < up Sup <1
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Remarque

On a ainsi montré que (U,)neN
est décroissante et minorée par

0 (car bornée entre 0 et 1). Nous
verrons dans un prochain chapitre
comment utiliser ces résultats
pour poursuivre 'étude de la suite

(Un)neN--
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