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SuitesGénéralités & suites usuelles

Introduction...

Difficile d’être précis sur l’origine des suites en mathématiques, qui sont très utilisées en arithmétique et en analyse. En revanche, Leonardo Da Pisa(≃ 1180−1250, italien, plus connu sous le nom de Leonardo Fibonacci) avait déjà introduit, en 1202, la célèbre suite qui porte son nom via le problèmesuivant : "Quelqu’un a déposé un couple de lapins dans un certain lieu, clos de toutes parts, pour savoir combien de couples seraient issus de cette paire
en une année, car il est dans leur nature de générer un autre couple en un seul mois, et qu’ils enfantent dans le second mois après leur naissance.".En notant (Fn) le nombre de couples de lapins en début du nème mois, on obtient :
• F1 = 1 (initialement, 1 couple de jeunes lapins)
• F2 = 1 (le couple n’a pas encore procréé, ils ne peuvent que dans le second mois après leur naissance)
• F3 = 2 (le couple initial, plus le nouveau couple engendré en un mois)
• F4 = 3 (seul le couple initial a engendré un couple supplémentaire, l’autre étant trop jeune)
• F4 = 5 (les 3 couples du mois précédents + un couple par couple capable de procréer : il y en a 2, le couple initial, et celui né il y a 2 mois)
• F5 = 8...On obtient ainsi la relation suivante : ∀n ∈ N∗, Fn+2 = Fn+1 + Fn , sans oublier les conditions initiales F1 = F2 = 1. Un des objectifs de ce chapitreest de déterminer une expression explicite de Fn en fonction de n.Pour finir, quelques mots sur Fibonacci... Il est un des rares mathématiciens de son époque et son travail a porté à la fois sur la géométrie et sur larésolution des équations du premier et second degré, mais aussi sur le calcul de racine carrée et cubique. Son influence a également été importantedans l’introduction des chiffres arabes en Occident.
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Pour bien démarrer...
1. Si pour tout n ∈ N, f (n) = 2n2 + 32n , que vaut f (n + 1) ?Soit n ∈ N. Dans ce cas : On remplace n par (n + 1) !✘ Attention !

f (n + 1) = 2(n + 1)2 + 32(n+1)= 2(n2 + 2n + 1) + 32n+2= 2n2 + 4n + 2 + 32 × 32n

2. Rappeler les règles de calculs sur les puissances.Pour tout a, b ∈ R et tout n, m ∈ N :
an × am = an+m

an × bn = (ab)n(an)m = (am)n = anm

et si b ̸= 0 : 1
bm = ( 1

b

)m = b−m

an

bn = (a
b

)
bn

bm = bn−m

3. Factoriser l’expression xn+1 − xn (x ∈ R, n ∈ N).Soient x ∈ R et n ∈ N. On a :
xn+1 − xn = xn × x − xn= xn(x − 1)
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I Suites numériques : premières définitions
Définitions 1 Suite

D1 Une suite numérique u est une fonction :
u : N −→ R

n 7−→ u(n) = unOn notera u ou (un), ou (un)n∈N une telle suite.
D2 un est appelé terme de rang n (ou terme d’indice n).
D3 Le premier terme de la suite (souvent u0 ou u1) est appelé terme initial.

Donner le terme général de(un)n∈N c’est donner l’expres-sion explicite de un en fonctionde n.
Vocabulaire

Dans tout ce chapitre, nous ferons comme si toutes les suites étaient définies sur N tout entier. En pratique, ça ne serapas toujours le cas. Les énoncés du cours contenant un "pour tout n ∈ N" seront alors à modifier.
un désigne un terme de la
suite, donc un nombre... Alorsque (un)n∈N désigne la suite ;comme pour les fonctions : f estune fonction, alors que f (x) est unnombre !

✓ Rigueur !

Au fil de l’année, nous allons étudier différentes suites, qui pourront être définies ainsi :
• explicitement : on donne un en fonction de n (c’est à dire par la donnée du terme général de (un)n∈N) ;
• par une relation de récurrence : un ou plusieurs premiers termes puis une expression d’un terme en fonction d’unou de plusieurs termes précédents ;
• implicitement ;
• on peut aussi définir plusieurs suites imbriquées.

Exemples 1

E1 Suites définies par leur terme général :

• ∀n ∈ N, un = 3n + 13 • ∀n ∈ N∗, vn = 1
n + 2n • ∀n ⩾ 2, wn = (−1)n

n(n + 1)
E2 Suites définies par une relation de récurrence :

•
{

u0 = 1
∀n ∈ N, un+1 = 3un + 5 •

{
v0 = 1
∀n ∈ N, vn+1 = vn

vn + 1 •
{

F0 = 1 et F1 = 1
∀n ∈ N, Fn+2 = Fn+1 + Fn

La suite (Fn) définie par :{
F0 = 1 et F1 = 1
∀n ∈ N, Fn+2 = Fn+1 + Fnest la suite de Fibonacci.
☞ Pour info...

E3 Suites définies implicitement :On peut démontrer (grâce au théorème de bijection) que pour tout n ∈ N, l’équation e−nx −x = 0 admet une uniquesolution dans R, on note αn cette unique solution. On définit ainsi une suite (αn)n∈N dont on peut d’ailleurs dire que
α0 = 1.
E4 Suites imbriquées :On considère les deux suites (un)n∈N et (vn)n∈N définies par u0 = v0 = 1 et pour tout n ∈ N :

un+1 = un + 3vn2 ; vn+1 = −un + vn

Comme pour les fonctions, il est naturel de définir de nouvelles suites par opérations (quand cela a du sens, et avec
λ ∈ R) : (λun) ; (un + vn) ; (unvn) ; (

un

vn

)

II Représentation graphique d’une suite
Deux cas :
1. Représentation point par point : la représentation de (un)n∈N est alors l’ensemble des points de coordonnées (n; un)dans un repère du plan.Cela revient à représenter une suite comme une fonction... On peut faire cela pour toutes les suites, à condition decalculer un certain nombre de termes.
2. Pour les suites définies par une relation de récurrence d’ordre 1 : il existe une représentation graphique qui permetaussi de déterminer graphiquement les valeurs des termes de la suite...
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♣ Méthode 1 ♣ Si (un)n∈N est définie sur N par "∀n ∈ N, un+1 = f (un)", où f est une fonction connue :
• Tracer la droite d’équation y = x (première bissectrice) ainsi que la courbe de la fonction f .
• Placer la valeur de u0 sur l’axe des abscisses.
• Obtenir u1 en remarquant que u1 = f (u0) ; c’est à dire que u1 est l’image de u0 par f .
• Reporter sur l’axe des abscisses la valeur de u1 en utilisant la première bissectrice.
• Réitérer jusqu’à en avoir marre... Cf

u0 u1 u2 ...

III Variations des suites
Définitions 2 Suite croissante / décroissante

D1 La suite (un)n∈N est croissante lorsque : ∀n ∈ N, un+1 ⩾ un

D2 La suite (un)n∈N est strictement croissante lorsque : ∀n ∈ N, un+1 > un

D3 La suite (un)n∈N est décroissante lorsque : ∀n ∈ N, un+1 ⩽ un

D4 La suite (un)n∈N est strictement décroissante lorsque : ∀n ∈ N, un+1 < un

D5 La suite (un)n∈N est constante lorsque : ∀n ∈ N, un+1 = un
Les suites monotones sont lessuites qui ne changent pas devariations.

Vocabulaire

Dans tous les cas, il faudra comparer un et un+1 pour toutes les valeurs de n.
♣ Méthode 2 ♣ Pour étudier les variations d’une suite, on peut étudier, pour tout n ∈ N, le signe de un+1 − un .

• On pourrait aussi comparer
un+1
un

à 1 ; faut-il encore s’assurerque, pour tout n ∈ N, un est dif-férent de 0 et de signe constant...Ce n’est donc, en pratique, pasplus simple et je ne procéderaijamais ainsi.
• Parfois, l’énoncé demanderad’établir les variations par récur-rence, en démontrant par exemple"∀n ∈ N, un ⩽ un+1 ".

♣ Méthode !

Exemples 2

E1 Considérons la suite (un)n∈N définie par :
∀n ∈ N, un = n

n + 1Étudions les variations de la suite (un)n∈N .Soit n ∈ N. On a :

Inutile de développer le dénomi-nateur : l’objectif est l’étude dusigne ; et c’est plus simple sousforme factorisée.
Remarque

un+1 − un = n + 1
n + 2 − n

n + 1= (n + 1)2 − n(n + 2)(n + 1)(n + 2) Réflexe
!

= n2 + 2n + 1− n2 − 2n(n + 1)(n + 2)
= 1(n + 1)(n + 2)
> 0

Conclusion : la suite (un)n∈N est strictement croissante.
E2 Considérons la suite (un)n∈N définie par :

∀n ∈ N, un = 32nÉtudions les variations de la suite (un)n∈N .Soit n ∈ N. On a :
2n+1 = 2 × 2n

☞ Rappel...un+1 − un = 32n+1 − 32n

= 3− 3 × 22n+1
= −32n+1
< 0

Conclusion : la suite (un)n∈N est strictement décroissante.
E3 Soit (un)n∈N une suite telle que

∀n ∈ N, un+1 = u2
n − un + 1
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• Étudions les variations de la suite (un)n∈N .Soit n ∈ N. On a :
un+1 − un = u2

n − un + 1− un= u2
n − 2un + 1= (un − 1)2

⩾ 0
Conclusion : la suite (un)n∈N est croissante.

• Que dire de la suite (un)n∈N dans le cas où u0 = 1 ?Dans ce cas, on a, d’après le calcul précédent :
u1 − u0 = (u0 − 1)2 = 0

Et donc
u1 = u0 = 1De même :

u2 − u1 = (u1 − 1)2 = 0Et donc
u2 = u1 = 1Démontrons donc, par récurrence, que pour tout n ∈ N, un = 1.

✱ Initialisation. Pour n = 0 :Immédiat, car u0 = 1. L’initialisation est vérifiée.

✱ Hérédité. Soit n ∈ N. Supposons que un = 1. Démontrons que un+1 = 1.On a :
un+1 = u2

n − un + 1
un = 1 par hypothèse de récurrence= 1− 1 + 1= 1

L’hérédité est ainsi établie.
Conclusion : si u0 = 1, alors pour tout n ∈ N, un = 1.Autrement dit, si u0 = 1, alors la suite (un)n∈N est constante égale à 1.

IV Majoration & minoration
Définitions 3 Suite majorée / minorée / bornée

D1 Soit M ∈ R. La suite (un)n∈N est majorée par M lorsque : ∀n ∈ N, un ⩽ M .Le réel M est alors un majorant de (un)n∈N . On dit UN majorant. Car si Mest un majorant de (un)n∈N , alors
M + 1, M + 2,... le sont tous. Parconséquent, une suite majoréeadmet une infinité de majorants !

✓ Rigueur !

D2 La suite (un)n∈N est majorée lorsque : ∃M ∈ R / ∀n ∈ N, un ⩽ M .
D3 Soit m ∈ R. La suite (un)n∈N est minorée par m lorsque : ∀n ∈ N, un ⩾ m.Le réel m est alors un minorant de (un)n∈N .
D4 La suite (un)n∈N est minorée lorsque : ∃m ∈ R / ∀n ∈ N, un ⩾ M .
D5 La suite (un)n∈N est bornée lorsqu’elle est à la fois minorée et majorée.

Quand pour tout n ∈ N, un ⩽ vn ,on dira souvent que la suite (vn)majore la suite (un)... Mais celane signifie pas que la suite (un)est majorée !En effet, par défini-tion, un majorant / minorant nepeut pas dépendre de la variable!

✘ Attention !

Exemples 3

E1 Une suite décroissante est majorée par son premier terme ; alors qu’une suite croissante est minorée par sonpremier terme (se démontre rapidement par récurrence).
E2 La suite de terme général 2− n est majorée par 2.
E3 La suite de terme général (−1)n est bornée par −1 et 1.
E4 Considérons la suite (un)n∈N définie par {

u0 = 0
∀n ∈ N, un+1 = √

un + 2 .Démontrons que (un)n∈N est bornée par 0 et 2.Démontrons par récurrence : ∀n ∈ N, 0 ⩽ un ⩽ 2.
• Initialisation. Pour n = 0 :Immédiat, car u0 = 0. L’initialisation est vérifiée.
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• Hérédité. Soit n ∈ N. Supposons que 0 ⩽ un ⩽ 2. Démontrons que 0 ⩽ un+1 ⩽ 2.Par hypothèse de récurrence : 0 ⩽ un ⩽ 2D’où : 2 ⩽ un + 2 ⩽ 4Et ainsi, par croissance de √. sur R+ :
√2 ⩽√

un + 2 ⩽ √4
Autrement dit : √2 ⩽ un+1 ⩽ 2D’où le résultat, puisque √2 ⩾ 0. L’hérédité est ainsi établie.

Conclusion : ∀n ∈ N, 0 ⩽ un ⩽ 2.Autrement dit, la suite (un)n∈N est bornée par 0 et 2.

• Ne changent pas le sens desinégalités : additionner/soustraire,multiplier/diviser par un positif etappliquer une fonction croissante.
• Changent le sens des inéga-lités : multiplier/diviser par unnégatif et appliquer une fonctiondécroissante.

☞ Rappels...

V Suites usuelles
V.1 Suites arithmétiques & suites géométriques

En fait, ces relations sont valablespour tout n ∈ N (sauf si q = 0pour les suites géométriques,car alors q−1 n’existe pas...) dumoment que (un)n∈N est arithmé-tique / géométrique à partir durang 0.

Remarque

Suites arithmétiques Suites géométriquesDéfinition il existe un réel r tel que pour tout n ∈ N :
un+1 = un + r

il existe un réel q tel que pour tout n ∈ N :
un+1 = q × un

Terme général à partir de u0 ∀n ∈ N, un = u0 + nr ∀n ∈ N, un = u0qn

Terme général à partir de u1 ∀n ∈ N∗, un = u1 + (n − 1)r ∀n ∈ N∗, un = u1qn−1
Terme général à partir de up ∀n ∈ Jp; +∞J, un = up + (n − p)r ∀n ∈ Jp; +∞J, un = upqn−p

Graphiquement... Suite arithmétique de raison 2 et de 1erterme −3 :

−1 1 2 3 4 5 6 7
−4−2

24

0

⇝ Croissance linéaire (points alignés)

Suite géométrique de raison 1, 5 et de 1erterme 1 :

−1 1 2 3 4 5 6
−2

24
6

0
⇝ Croissance exponentielle

Somme de termes consécu-tifs = nb de termes ×
1er + dernier terme2 = 1er terme ×

1− raisonnb de termes1− raison (siraison̸= 1)= 1er terme × nb de termes (si raison= 1)
Je fais le choix d’énoncer cesformules sans expression mathé-matique... Mais leur démonstrationle sera. Cela laisse le choix dansl’apprentissage !

Remarque

⋆ Démonstration :
• Aucune difficulté pour l’expression des termes généraux, que l’on démontre proprement par récurrence.
• Somme des termes consécutifs d’une suite arithmétique :Soient r un réel et (un)n∈N une suite arithmétique de raison r . Soient p ∈ N et n ∈ Jp; +∞J. On a :

n∑
k=p

uk = n∑
k=p

(
up + (k − p)r)

= n∑
k=p

up + r
n∑

k=p

(k − p)
j = k − p dans la somme de droite

= (n − p + 1)up + r
n−p∑
j=0 j

= (n − p + 1)up + r (n − p)(n − p + 1)2= (n − p + 1)2up + r(n − p)2= (n − p + 1)up + up + (n − p)r2= (n − p + 1)up + un2D’où le résultat voulu.

Pour tous a, b ∈ Z tels que
a ⩽ b :Card(Ja; bK) = b − a + 1

☞ Rappel...
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• Somme des termes consécutifs d’une suite géométrique :Soient q un réel et (un)n∈N une suite géométrique de raison q. Soient p ∈ N et n ∈ Jp; +∞J.
✱ Si q = 1, alors la suite (un)n∈N est constante, égale à u0 et ainsi :

n∑
k=p

uk = n∑
k=p

u0
= (n − p + 1)u0

✱ Si q ̸= 1 :
n∑

k=p

uk = n∑
k=p

upqk−p

= up

n∑
k=p

qk−p

j = k − p

= up

n−p∑
j=0 qj

q ̸= 1
= up

1− qn−p+11− qD’où le résultat.
⋆

♣ Méthode 3 ♣ Pour montrer qu’une suite (un)n∈N est arithmétique (resp. géométrique), on cherche généralementà établir qu’il existe qqch ∈ R tel que que pour tout entier naturel n, un+1 = un + qqch (resp. un+1 = un × qqch). Etpour cela, on part du membre de gauche pour retrouver le membre de droite.
Exemples 4

E1 Considérons la suite (un)n∈N définie par un = 3n + 7 pour n ∈ N. On reconnaît le terme général de la suitearithmétique de premier terme u0 = 7 et de raison 3.
E2 Considérons les suites (un)n∈N et (vn)n∈N définies par{

u0 = 1 ; u1 = 2
∀n ∈ N, un+2 = 2un+1 − un + 2
∀n ∈ N, vn = un+1 − unDémontrons que la suite (vn)n∈N est arithmétique. Déduisons-en (par sommation) son terme général ainsi que celuide (un)n∈N .

• Soit n ∈ N. On a :
vn+1 = un+2 − un+1= 2un+1 − un + 2− un+1= un+1 − un + 2= vn + 2

Conclusion : la suite (vn)n∈N est arithmétique de raison 2 et de premier terme v0 , avec v0 = u1 − u1 = 1.
• On en déduit :

∀n ∈ N, vn = 1 + 2nAinsi :
∀k ∈ N, uk+1 − uk = 1 + 2kSoit ensuite n ∈ N.

✱ Si n ⩾ 1 :Sommons ce qui précède, pour k allant de 0 à n − 1 (licite car n − 1 ⩾ 0) :
n−1∑
k=0 (uk+1 − uk ) = n−1∑

k=0 (1 + 2k )
Or :

Quand on a une expression de laforme uk+1 = uk + ak et que
l’on sait calculer n−1∑

k=0 ak , alors il
peut être intéressant de sommerla relation uk+1 − uk = ak pourensuite par télescopage, obtenir
un ...

À retenir...

✕ par télescopage :
n−1∑
k=0 (uk+1 − uk ) = un − u0

= un − 1
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✕ et :
n−1∑
k=0 (1 + 2k ) = n−1∑

k=0 1 + 2 n−1∑
k=0 k

= n + 2(n − 1)n2= n + (n − 1)n= n2
D’où :

un − 1 = n2
Conclusion : un = 1 + n2 .

✱ Si n = 0 :On a :
u0 = 1 = 1 + 02

La relation trouvée est donc encore valable quand n = 0...
Conclusion : ∀n ∈ N, un = 1 + n2 .

♣ Méthode 4 ♣ Pour montrer qu’une suite n’est pas arithmétique (resp. géométrique), la donnée de trois termesconsécutifs suffit !
Exemple 5Montrons que la suite (un)n∈N , définie par : ∀n ∈ N, un = 2n + 3n , n’est ni arithmétique ni géométrique.On a déjà :

u0 = 1 ; u1 = 3 ; u2 = 13
• Ainsi :

u1 − u0 ̸= u2 − u1Donc la suite (un)n∈N n’est pas arithmétique.
• Et : u1

u0 ̸= u2
u1Donc la suite (un)n∈N n’est pas géométrique.

Conclusion : la suite (un)n∈N n’est ni arithmétique, ni géométrique.
V.2 Suites arithmético-géométriques

Définition 4 Suite arithmético-géométrique

Une suite (un)n∈N est arithmético-géométrique lorsqu’il existe deux réels a et b tels que :
∀n ∈ N, un+1 = a × un + b

Si a = 0, alors la suite (un)n∈N est constante.Si b = 0, alors la suite (un)n∈N est géométrique.Si a = 1, alors la suite (un)n∈N est arithmétique.
 Nous exclurons ces cas-là dans la suite de notre étude. Hormis ces trois cas, une suitearithmético-géométrique n’est niarithmétique, ni géométrique.

✘ Attention !

Objectif : déterminer le terme général des suites arithmético-géométriques.
À l’aide d’observations graphiques, on voit que le point d’intersection entre la droite d’équation y = ax +b et la premièrebissectrice a un rôle important... Et puisque a ̸= 1, l’équation x = ax + b admet une unique solution b1− a (on parlede point fixe de la fonction x 7−→ ax + b), que nous notons α . Nous avons donc deux informations à ce niveau-là :{

∀n ∈ N, un+1 = aun + b
α = aα + bCe qui donne, en soustrayant ces deux égalités membre à membre :

∀n ∈ N, un+1 − α = a(un − α)Ainsi, la suite (un−α)n∈N est géométrique ; on peut donc déterminer son terme général et en déduire celui de (un)n∈N ...
Ce qu’il faut retenir :
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♣ Méthode 5 ♣ Pour déterminer le terme général d’une suite arithmético-géométrique :
• Résoudre l’équation x = ax + b (on note α la solution ici).
• Poser la suite auxiliaire (vn)n∈N définie par : ∀n ∈ N, vn = un − α ; et vérifier qu’elle est géométrique.
• En déduire le terme général de (vn)n∈N puis celui de (un)n∈N (on a : ∀n ∈ N, un = vn + α).

Exemple 6

Déterminons le terme général de la suite (un)n∈N définie par : { u0 = 1
∀n ∈ N, un+1 = 12un + 3 .

• Soit x ∈ R. On a :
x = 12 x + 3 ⇐⇒ 12 x = 3

⇐⇒ x = 6
• Considérons la suite (vn)n∈N définie par :

∀n ∈ N, vn = un − 6
Démontrons que (vn)n∈N est géométrique. On pourrait procéder autrementen disant que :

∀n ∈ N, un+1 = 12 un + 3
D’après la résolution faite :

6 = 12 × 6 + 3
D’où en soustrayant membre àmembre :
∀n ∈ N, un+1 − 6 = 12 (un − 6)

Autrement dit :
∀n ∈ N, vn+1 = 12 vn

♣ Méthode !Soit n ∈ N. On a :
vn+1 = un+1 − 6

= 12un + 3− 6
= 12un − 3

un = vn + 6= 12 (vn + 6)− 3
= 12 vn

Par conséquent, la suite (vn)n∈N est géométrique de raison 12 et de premier terme v0 , avec v0 = u0− 6 = −5.
• D’où

∀n ∈ N, vn = −5 × (12
)n

Or, pour tout n ∈ N, un = vn + 6...
Conclusion : ∀n ∈ N, un = 6− 5 (12

)n . Attention aux priorités de calculs...Ce résultat ne se simplifie pas !
✘ Attention !

V.3 Suites récurrentes linéaires d’ordre 2
Définitions 5 Suite récurrente linéaire d’ordre 2

D1 Une suite (un)n∈N est récurrente linéaire d’ordre 2 lorsqu’il existe deux réels a, b tels que (a, b) ̸= 0 et Dans le cas où (a, b) = (0, 0), ona simplement :
∀n ∈ N, un+2 = 0La suite (un)n∈N est donc nulle àpartir du rang 2...

Remarque

∀n ∈ N, un+2 = aun+1 + bun

D2 L’équation x2 − ax − b = 0 est alors appelée équation caractéristique de la suite (un)n∈N .
Le théorème suivant va fournir les expressions possibles pour les suites récurrentes linéaires d’ordre 2 :

Théorème 1

Soient a, b ∈ R tel que (a, b) ̸= 0 et (un)n∈N une suite vérifiant : ∀n ∈ N, un+2 = aun+1 + bun ; et soit ∆ lediscriminant associé à l’équation caractéristique x2 − ax − b = 0.
1. Si ∆ > 0, alors l’équation x2 − ax − b = 0 admet deux solutions distinctes x1 et x2 et :

∃!(α, β) ∈ R2 / ∀n ∈ N, un = αxn1 + βxn2
2. Si ∆ = 0, alors l’équation x2 − ax − b = 0 admet une seule solution x0 et :

∃!(α, β) ∈ R2 / ∀n ∈ N, un = (αn + β)xn0
Le cas ∆ < 0 n’est pas au pro-gramme ; il fait intervenir les trèsfameux nombres complexes, quenous n’étudierons pas !

☞ Pour info...
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⋆ Démonstration : Détaillons-la en plusieurs points. Il est également possible, le ré-sultat étant donné, de procéderpar récurrence (double).
Remarque

Supposons que ∆ ⩾ 0 et notons x1 et x2 les deux racines, éventuellement égales, de x 7−→ x2 − ax − b.
1. Exprimons x1 + x2 et x1x2 en fonction de a et b.D’après les relations coefficients-racines, on a : Soit f : x 7−→ ax2 + bx + c unefonction polynomiale de degré 2et ∆ sont discriminant associé.

• Si ∆ > 0, alors :
∀x ∈ R, f (x) = a(x − x1)(x − x2)où x1 et x2 sont les deux racinesdistinctes de f .
• Si ∆ = 0, alors :
∀x ∈ R, f (x) = a(x − x0)2où x0 est l’unique racine de P .Les deux cas se regroupent et ona donc, si ∆ ⩾ 0 :

∀x ∈ R, f (x) = a(x − x1)(x − x2)où x1 et x2 sont éventuellementégales (dans le cas ∆ = 0).En développant cette forme, onobtient, pour tout x ∈ R

f (x) = a
(
x2 − (x1 + x2)x + x1x2)

= a(x2 − Sx + P)= ax2 − aSx + aPoù S est la SOMME des racineset P leur PRODUIT.

☞ Rappel...

x1 + x2 = a ; x1x2 = −b

2. Soit n ∈ N∗ . Simplifions n−1∑
k=0 xn−k−11 (uk+1 − x1uk ).On a :

n−1∑
k=0 xn−k−11 (uk+1 − x1uk ) = n−1∑

k=0 xn−k−11 uk+1 −
n−1∑
k=0 xn−k1 uk

= n−1∑
k=0 xn−(k+1)1 uk+1 −

n−1∑
k=0 xn−k1 uk télescopage= un − xn1 u0

3. Considérons la suite (vn)n∈N définie par : ∀n ∈ N, vn = un+1−x1un . Démontrons que la suite (vn)n∈N est géométrique,puis déduisons-en son terme général.
• Soit n ∈ N. On a :

vn+1 = un+2 − x1un+1= aun+1 + bun − x1un+1= (a − x1)un+1 + bun question précédente= x2un+1 − x1x2un= x2(un+1 − x1un)= x2vn

Conclusion : la suite (vn)n∈N est géométrique de raison x1 et de premier terme v0 , avec v0 = u1 − x1u0 .
• D’où :

∀n ∈ N, vn = (u1 − x1u0)xn2
4. Supposons b ̸= 0. Déduisons des questions précédentes, en distinguant les cas ∆ > 0 et ∆ = 0, le terme général dela suite (un)n∈N .Soit n ∈ N∗ . D’après la question 2. :

n−1∑
k=0 xn−k−11 (uk+1 − x1uk ) = un − xn1 u0

Mais, d’après la question 3. :
n−1∑
k=0 xn−k−11 (uk+1 − x1uk ) = n−1∑

k=0 xn−k−11 vk

= n−1∑
k=0 xn−k−11 (u1 − x1u0)xk2

b ̸= 0, donc x1 ̸= 0 (car b = −x1x2)
= (u1 − x1u0)xn−11

n−1∑
k=0

(
x2
x1

)k

• Si ∆ > 0 :Dans ce cas, x1 ̸= x2 et donc x2
x1 ̸= 1. D’où :

(u1 − x1u0)xn−11
n−1∑
k=0

(
x2
x1

)k = (u1 − x1u0)xn−11 1− (
x2
x1

)n

1− x2
x1

= (u1 − x1u0) xn1
x1

1− (
x2
x1

)n

1− x2
x1= (u1 − x1u0) xn1 − xn2

x1 − x2
Et ainsi, d’après le résultat de la question 2. rappelé en début :

un = u0xn1 + (u1 − x1u0) xn1 − xn2
x1 − x2
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= (
u0 + u1 − x1u0

x1 − x2
)

xn1 + x1u0 − u1
x1 − x2 xn2

= u1 − x2u0
x1 − x2 xn1 + x1u0 − u1

x1 − x2 xn2 en posant α = u1 − x2u0
x1 − x2 et β = x1u0 − u1

x1 − x2= αxn1 + βxn2
• Si ∆ = 0 :Dans ce cas, x1 = x2 et donc x2

x1 = 1. D’où :
(u1 − x1u0)xn−11

n−1∑
k=0

(
x2
x1

)k = (u1 − x1u0)xn−11
n−1∑
k=0 1

= (u1 − x1u0)nxn−11Et ainsi, d’après le résultat de la question 2. rappelé en début :
un = u0xn1 + (u1 − x1u0)nxn−11

x1 ̸= 0 (car b ̸= 0)= (
u0 + u1 − x1u0

x1 n
)

xn1 en posant α = u1 − x1u0
x1 et β = u0= (αn + β)xn1On a donc établi les relations voulues pour tout n ∈ N∗ ; et on vérifie ensuite rapidement (en reprenant les expressionsde α et β dans chaque cas), qu’elles sont encore valables pour n = 0 : c’est le cas !

5. Que dire si b = 0 ?Supposons b = 0. Dans ce cas :
∀n ∈ N, un+2 = aun+1Autrement dit :
∀k ∈ N∗, uk+1 = aukAinsi, la suite (un)n∈N∗ est géométrique de raison a. D’où :
∀n ∈ N∗, un = u1an−1

Or, a ̸= 0 (sinon, on aurait (a, b) = (0, 0)), d’où, pour tout n ∈ N∗ :
un = u1

a an

n ⩾ 1, donc 0n = 0= u1
a an + (

u0 − u1
a

)
× 0n en posant α = u1

a et β = u0 − u1
a= αan + β0n

Et cette relation est encore valable pour n = 0 (il suffit de remplacer les valeurs de α et β pour le vérifier). Par convention, on considère que00 = 1.
☞ Rappel...Onretrouve bien le cas traité ci-dessus avec ∆ > x0, puisque a et 0 sont alors les solutions de l’équation caractéristiquede la suite (un)n∈N ...

⋆

Pour compléter :
♣ Méthode 6 ♣ Pour déterminer le terme général d’une suite récurrente linéaire d’ordre 2 :
• Poser et résoudre l’équation caractéristique associée.
• Déterminer α et β en utilisant les conditions initiales de (un)n∈N (qui sont souvent les valeurs de u0 et u1) : ilfaudra résoudre un petit système.

Les expressions des termes gé-néraux sont identiques si la suiten’est définie qu’à partir d’un cer-tain rang : les valeurs de α et βs’en trouveront juste changées...

♥ Astuce du chef ♥

Exemples 7

E1 La suite de Fibonacci est une suite récurrente linéaire d’ordre 2 d’équation caractéristique x2 − x − 1 = 0.
E2 Déterminons le terme général de la suite (un)n∈N définie par : {

u0 = 0 ; u1 = 1
∀n ∈ N, un+2 = un+1 + 2un

.
Je vous propose cette rédaction,courte, claire et complète : inutiled’introduire ∆, ni de détailler larésolution de l’équation caracté-ristique !

✍ RédactionLa suite (un)n∈N est une suite récurrente linéaire d’ordre 2 d’équation caractéristique x2−x−2 = 0 dont les solutionssont −1 et 2.Par conséquent, il existe (α, β) ∈ R2 , que l’on considère ensuite, tels que :
∀n ∈ N, un = α(−1)n + β × 2n

Or u0 = 0 et u1 = 1, d’où : {
α + β = 0

−α + 2β = 1 .
Mais : {

α + β = 0
−α + 2β = 1 ⇐⇒

L2 ← L2 + L2
{

α + β = 03β = 1
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⇐⇒

α = −13
β = 13

Conclusion : ∀n ∈ N, un = −13 (−1)n + 132n . On vérifie les valeurs de u0 et u1avec le résultat final...
Vérification

V.4 Suites définies par un+1 = f (un)C’est un cas très courant dont nous avons déjà rencontré des cas particuliers : les suites arithmético-géométriques. Eneffet, si (un)n∈N est une SAG, elle vérifie une relation de la forme un+1 = f (un), avec f une fonction affine.
Nous avons déjà vu comment représenter la suite (un)n∈N (voir méthode 1) ; mais son étude sera en général plussophistiquée. Nous ne verrons pas de généralités, mais il est bon de retenir que :
♣ Méthode 7 ♣ Pour étudier une suite (un)n∈N définie par "∀n ∈ N, un+1 = f (un)" :
• il faut connaître le mieux possible la fonction f et essayer d’en utiliser les caractéristiques ;
• il va falloir très certainement raisonner par récurrence (pour justifier que un existe bien pour tout n, pour étudierles variations de (un)n∈N , ou pour montrer qu’elle est minorée/bornée...)

Cette étude sera complétée et re-vue régulièrement durant l’année.
☞ Pour info...

Exemple 8

Considérons la fonction f : x 7−→ xe−x , définie sur R, ainsi que la suite (un)n∈N définie par : {
u0 = 1
∀n ∈ N, un+1 = f (un) .

• Dressons le tableau de variations de f sur R.La fonction f est dérivable sur R, comme produit de fonctions dérivables sur R et, pour tout x ∈ R :
f ′(x) = e−x + x(−e−x )= e−x (1− x)

D’où :
Il n’est pas nécessaire de détaillerle signe de 1− x ...

Remarque
x

f ′(x)
f

−∞ 1 +∞
+ 0 −

e−1e−1

• Démontrons par récurrence que : ∀n ∈ N, 0 ⩽ un ⩽ 1.

✱ Initialisation. Pour n = 0 :Immédiat, car u0 = 1. L’initialisation est vérifiée.

✱ Hérédité. Soit n ∈ N. Supposons que 0 ⩽ un ⩽ 1. Démontrons que 0 ⩽ un+1 ⩽ 1.Par hypothèse de récurrence : 0 ⩽ un ⩽ 1D’où, par croissance de f sur [0; 1] :
f (0) ⩽ f (un) ⩽ f (1)Autrement dit : 0 ⩽ un+ ⩽ e−1

Or e−1 < 1, donc par transitivité : 0 ⩽ un+1 ⩽ 1L’hérédité est ainsi établie.
Conclusion : ∀n ∈ N, 0 ⩽ un ⩽ 1.

• Étudions les variations de la suite (un)n∈N . On aurait aussi pu démontrerdirectement par récurrence :
∀n ∈ N, 0 ⩽ un+1 ⩽ un ⩽ 1
RemarqueSoit n ∈ N. On a :

un+ − un = f (un)− un= une−un − un= un(e−un − 1)
Or :
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✱ d’après le point précédent
un ⩾ 0

✱ et comme un ⩾ 0, on a −un ⩽ 0 ; et donc, par croissance de exp sur R :
e−un ⩽ e0

D’où : e−un − 1 ⩽ 0On en déduit :
un(e−un − 1) ⩽ 0Autrement dit :
un+1 − un ⩽ 0

Conclusion : la suite (un)n∈N est décroissante.
On a ainsi montré que (un)n∈Nest décroissante et minorée par0 (car bornée entre 0 et 1). Nousverrons dans un prochain chapitrecomment utiliser ces résultatspour poursuivre l’étude de la suite(un)n∈N ...

Remarque
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