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(CHARTREUX

SUITES

GENERALITES & SUITES USUELLES

INTRODUCTION...

Difficile d'étre précis sur lorigine des suites en mathématiques, qui sont trés utilisées en arithmétique et en analyse. En revanche, Leonardo Da Pisa
(= 1180 —1250, italien, plus connu sous le nom de Leonardo Fibonacci) avait déja introduit, en 1202, la célébre suite qui porte son nom via le probleme
suivant : "Quelqu’un a déposé un couple de lapins dans un certain lieu, clos de toutes parts, pour savoir combien de couples seraient issus de cette paire
en une année, car il est dans leur nature de générer un autre couple en un seul mois, et qu'ils enfantent dans le second mois aprés leur naissance.’.
En notant (F,) le nombre de couples de lapins en début du n®™ mois, on obtient :

e [ =1 (initialement, 1 couple de jeunes lapins)

e [, =1 (le couple n'a pas encore procréé, ils ne peuvent que dans le second mois apres leur naissance)

e [5 =2 (le couple initial, plus le nouveau couple engendré en un mois)

e [4 =3 (seul le couple initial a engendré un couple supplémentaire, l'autre étant trop jeune)

o [4 =5 (les 3 couples du mois précédents + un couple par couple capable de procréer : il y en a 2, le couple initial, et celut né il y a 2 mois)
e f5=28.

On obtient ainsti la relation suivante : ¥n € N*, F,, = F,41 + F,, sans oublier les conditions initiales f1 = F, = 1. Un des objectifs de ce chapitre
est de déterminer une expression explicite de F, en fonction de n.

Pour finir, quelques mots sur Fibonacci... Il est un des rares mathématiciens de son époque et son travail a porté a la fois sur la géométrie et sur la
résolution des équations du premier et second degré, mais aussi sur le calcul de racine carrée et cubique. Son influence a également été importante
dans Uintroduction des chiffres arabes en Occident.
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POUR BIEN DEMARRER...

1. Si pour tout n € N, f(n) = 2n? + 3*", que vaut f(n + 1)?
Soit n € N. Dans ce cas :
f(n+1)=2(n+1)* 432+
=2(n” +2n 4 1) 4 3%+?
=20’ +4n + 2437« 3"
2. Rappeler les regles de calculs sur les puissances.
Pour tout a, b € R et tout n,m € N :
”/7 . (]m _ (IH+/H
a” x b" = (ab)"
(Oﬂ)ﬂl - (0/77)/7 - 0/7/77
etsib+#0:

bH
__ RKh—m
bm o b
3. Factoriser lexpression x"*' —x" (x € R, n € N).
Soient x € Retn €N.On a:
X”H = X" x — X"
=x"(x—=1)
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o

X Attention !
n remplace n par (n

+1)1




|  SUITES NUMERIQUES : PREMIERES DEFINITIONS

DEFINITIONS 1 SuITE

Une suite numérique u est une fonction :

u:‘N — R

n +— u(n)=u,
On notera u ou (u,), ou (U,),en une telle suite.
u, est appelé terme de rang n (ou terme d'indice n).

Le premier terme de la suite (souvent up ou uq) est appelé terme initial.

Dans tout ce chapitre, nous ferons comme si toutes les suites étaient définies sur N tout entier. En pratique, ca ne sera
pas toujours le cas. Les énoncés du cours contenant un “pour tout n € N’ seront alors a modifier.

Au fil de l'année, nous allons étudier différentes suites, qui pourront étre définies ainsi :
e explicitement : on donne u, en fonction de n (clest a dire par la donnée du terme général de (u,)nen);

e par une relation de récurrence : un ou plusieurs premiers termes puis une expression d'un terme en fonction d'un
ou de plusieurs termes précédents;

e implicitement;

e on peut aussi définir plusieurs suites imbriquées.

EXEMPLES 1

Suites définies par leur terme général :

1 1 —1)"
e VneN, u,=3n+= e VneN*, v,=—+2" e Vn>2, Wn:Q
3 n n(n+1)
Suites définies par une relation de récurrence :
. U0:1 V():'] o F0:1 et F1:1
VneN, vy =3u,+5 *lvneN, v,-_2 1 Vn €N, Fpo=Foir + F,
Vp +

Suites définies implicitement :

On peut démontrer (grace au théoreme de bijection) que pour tout n € N, l'équation e™" —x = 0 admet une unique
solution dans R, on note a, cette unique solution. On définit ainsi une suite (a,),en dont on peut d'ailleurs dire que
Qy = 1.

Suites imbriquées :

On considere les deux suites (up,)nen et (vy)nen définies par ug = vo =1 et pour tout n € N :

—nx

u, + 3v, )
Upyr = # ' Va1 = —Up + VY

Comme pour les fonctions, il est naturel de définir de nouvelles suites par opérations (quand cela a du sens, et avec
AER):

(Aun) & (o +va) 5 (Unva) (L)

Vi

I REPRESENTATION GRAPHIQUE D'UNE SUITE

Deux cas :

1. Représentation point par point : la représentation de (u,),en est alors l'ensemble des points de coordonnées (n; u,)
dans un repére du plan.
Cela revient a représenter une suite comme une fonction.. On peut faire cela pour toutes les suites, a condition de
calculer un certain nombre de termes.

2. Pour les suites définies par une relation de récurrence d'ordre 1 : il existe une représentation graphique qui permet
aussi de déterminer graphiquement les valeurs des termes de la suite..
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Vocabulaire

Donner le terme général de
(un)nen cest donner 'expres-
sion explicite de u, en fonction
de n.

v Rigueur !

o

u, désigne un terme de la

suite, donc un nombre... Alors

que (Up)nen désigne la suite;
comme pour les fonctions : f est
une fonction, alors que f(x) est un
nombre !

La suite (F,) définie par :
Fo=1 e =1
VneN, Foo=F+F,
est la suite de Fibonacci.




& METHODE 1 ® Si (u,),en est définie sur N par 'Vn € N, u,1 = f(u,)" ol f est une fonction connue :
e Tracer la droite d'équation y = x (premiére bissectrice) ainsi que la courbe de la fonction f.
e Placer la valeur de ug sur l'axe des abscisses.
e Obtenir uq en remarquant que uy = f(up); cest a dire que uy est l'image de ug par f.

Reporter sur l'axe des abscisses la valeur de uq en utilisant la premiere bissectrice.

Réitérer jusqu'a en avoir marre...

DEFINITIONS 2 SUITE CROISSANTE / DECROISSANTE

VARIATIONS DES SUITES

D1 | La suite (u,)yen est croissante lorsque : Vn € N, up1 = U,
D2 | La suite (u,)yen est strictement croissante lorsque : Vn € N, u,.1 > u,
D3| La suite (u,)yen est décroissante lorsque : Vn € N, u,1 < U,

D4 | La suite (u,),en est strictement décroissante lorsque : Vn € N, v, < u,

D5 | La suite (u,)yen est constante lorsque : Vn € N, v, = u,

Dans tous les cas, il faudra comparer u, et u,.1 pour toutes les valeurs de n.

B

MEeTHoDE 2 & Pour étudier les variations d’'une suite, on peut étudier, pour tout n € N, le signe de v, 4

— u,.

| EXEMPLES 2 I

Considérons la suite (u,),en définie par :

n
VneN, u, =
" 41
Etudions les variations de la suite (Un)nen.
Soit n € N. On a :
n-+1 n
Uppq — Uy = — —
n—+2 n—+1

(n+1%—n(n+ Z)
(n+MN(n+2)
n’4+2n+1—n>—2n
(n+1)(n+2)

1
(n+ N(n+2)
>0
|Conclusion : la suite (u,),en est strictement croissante.
Considérons la suite (u,),en définie par :
3
YneN, u, = >0
Etudions les variations de la suite (Un)nen.
Soit n € N. On a:
3 3
Ups1 — Uy 5n >
3—3x2
on 1
-3
T on+
<0

|C0nclusi0n : la suite (u,),en est strictement décroissante.

Soit (uy)nen une suite telle que

Yn €N, Uy = > —u, + 1
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C

S — — —
S+ - - = -

Vocabulaire

Les suites monotones sont les
suites qui ne changent pas de
variations.

— & Meéthode !

e On pourrait aussi comparer
Un+1
Up
que, pour tout n € N, u, est dif-
férent de 0 et de signe constant...

Ce n'est donc, en pratique, pas
plus simple et je ne procéderat
jamais ainsi.

o Parfois, énoncé demandera
d'établir les variations par récur-
rence, en démontrant par exemple
YneN, u, < upgr'

a 1: faut-il encore s'assurer

Remarque

Inutile de développer le dénomi-
nateur : lobjectif est l'étude du
signe; et clest plus simple sous
forme factorisée.

= Rappel...
gwﬂ —2x 2"




e Etudions les variations de la suite (Un)nen-
Soit n € N.Ona:

Upsq — U, = uf, —u,+1—u,
= uf, —2u, +1
= (u, — 1)
>0

Conclusion : la suite (u,),en est croissante.

e Que dire de la suite (u,)pen dans le cas ol ug =17
Dans ce cas, on a, d'apres le calcul précédent :

Uy — ug = (ug — 1)/7 =0

Et donc
up = ug =1
De méme :
5
u—up=(u—1)7°=0
Et donc
u, =uq =1
Démontrons donc, par récurrence, que pour tout n € N, u, = 1.
* Initialisation. Pour n =0 :
Immédiat, car ug = 1. L'initialisation est vérifiée.
* Hérédité. Soit n € N. Supposons que v, = 1. Démontrons que v, = 1.
On a:
/
Upsr = Uy — Uy + 1
/ u, =1 par hypothése de récurrence
=1-1+1
=1

L'hérédité est ainsi établie.
Conclusion : st ug =1, alors pour tout n € N, u, = 1.
Autrement dit, st ug = 1, alors la suite (u,),en est constante égale a 1.

V' MAJORATION & MINORATION

DEFINITIONS 3 SUITE MAJOREE / MINOREE / BORNEE

Soit M € R. La suite (u,),en est majorée par M lorsque : Vn € N, u, < M.
Le réel M est alors un majorant de (u,)nen-

La suite (u,)sen est majorée lorsque : IM € R/ Vn € N, u, < M.

Soit m € R. La suite (u,),en est minorée par m lorsque : Vn € N, v, = m.
Le réel m est alors un minorant de (u,)nen-

La suite (u,)pen est minorée lorsque : dm € R /Vn €N, u, > M.

La suite (u,),en est bornée lorsqu'elle est a la fois minorée et majorée.

| ExempLES 3 I

Une suite décroissante est majorée par son premier terme; alors qu'une suite croissante est minorée par son
premier terme (se démontre rapidement par récurrence).

| E2| La suite de terme général 2 — 1 est majorée par 2.

E3 | La suite de terme général (—1)" est bornée par —1 et 1.

=0
Considérons la suite (u,),en définie par «[ to

vn €N, Upgr = Un+2
Démontrons que (u,)nen est bornée par O et 2.
Démontrons par récurrence : ¥n € N, 0 < v, < 2

e Initialisation. Pour n =0 :
Immédiat, car ug = 0. L'initialisation est vérifiée.
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— ¢ Rigueur !

On dit UN majorant. Car si M
est un majorant de (up)yen, alors
M +1, M+ 2,... le sont tous. Par
conséquent, une suite majorée
admet une infinité de majorants !

— X Attention !

4 Quand pour tout n € N, u, < vy,

on dira souvent que la suite (v,)
majore la suite (up).. Mais cela
ne signifie pas que la suite (uy)
est majorée |En effet, par défini-
tion, un majorant / minorant ne
peut pas dépendre de la variable
|




VA
N

e Hérédité. Soit n € N. Supposons que 0 < v, < 2. Démontrons que 0 < v,
Par hypothese de récurrence :

O0<u, <2

Dot :

Et ainsi, par croissance de /- sur R

Autrement dit :
V2 LUy <2

D'ol le résultat, puisque V2 > 0. L'hérédité est ainsi établie

= Rappels...

o Ne changent pas le sens des
inégalités : additionner/soustraire,
multiplier/diviser par un positif et
appliquer une fonction croissante.
e Changent le sens des inéga-
lités : multiplier/diviser par un
négatif et appliquer une fonction
décroissante.

Conclusion : Vn €N, 0< v, < 2
Autrement dit, la suite (u,),en est bornée par O et 2

V' SUITES USUELLES

V4 SUITES ARITHMETIQUES & SUITES GEOMETRIQUES

SUITES ARITHMETIQUES SUITES GEOMETRIQUES

DEFINITION il existe un réel r tel que pour tout n € N : il existe un réel g tel que pour tout n € N :

Upyt = Up + T Upt1 =@ x Up

TERME GENERAL A PARTIR DE U VYneN, u, =ug+nr VneN, u, =upq”

1

TERME GENERAL A PARTIR DE U1 VneN* uy,=ui+(n—"1)r Vn e N* u, =u1q""

TERME GENERAL A PARTIR DE U Vn € [p;+ool, up = up+(n—p)r Vn € [p;+ool, up = upq" "

GRAPHIQUEMENT... Suite arithmétique de raison 2 et de 1¢' Suite géométrique de raison 1,5 et de 1°¢

terme —3: terme 1 :
T +
4 6
+ +
4
2 I ¥
: ettt 21 4 %+
1 lg+ 2 3 4 5 6 7
L I I I I I [ -
-2 ettt
1 g1 2 3 4 5 6
—4 -2

~ Croissance linéaire (points alignés) ~~ Croissance exponentielle

Remarque

En fait, ces relations sont valables
pour tout n € N (saufsi g = 0
pour les suites géométriques,

car alors g~ n'existe pas..) du
moment que (U,),eN est arithmé-
tique / géométrique a partir du
rang 0.

. 1er + dernier terme 1 — raisonn? de termes
SOMME DE TERMES CONSECU- =nb de termes x —M —— — — 1 ferme x OO0
TIFS 2 1 — raison
raison# 1)

= 1°" terme x nb de termes (si raison= 1)

*
DEMONSTRATION :

e Aucune difficulté pour l'expression des termes généraux, que l'on démontre proprement par récurrence.

e Somme des termes consécutifs d'une suite arithmétique :
Soient r un réel et (u,),en Une suite arithmétique de raison r. Soient p € N et n € [p; +oof. On a :

n

Zuk = Z(up—i-(k—p)r)
k=p

k=p
=Zup+rZ(/<—p) . .
k=p k=p J Jj =k — p dans la somme de droite
/‘pr
=(n—p+Nup+r) |
j=0
:(n—p+1)up+rw
2u, +r(n—p)
—(n— N A
(n—p+1) 5
—(h— Up +up+(n—pr
=Mn-p+1) 3
—(n—pt 1)l

2

Dot le résultat voulu.
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Remarque

Je fais le choix d'énoncer ces
formules sans expression mathé-
matique... Mais leur démonstration
le sera. Cela laisse le choix dans
l'apprentissage !

= Rappel...

Pour tous a,b € Z tels que
a<b:

Card([a; b]) =b—a+1




e Somme des termes consécutifs d'une suite géométrique :
Soient g un réel et (u,),en une suite géométrique de raison g. Soient p € N et n € [p; +oof.

* St g =1, alors la suite (u,),en est constante, égale a ug et ainsi :
n n
U =) _uo
k=p k=p
=(n—=p+Tug

* Sig+1:

n
> ui=) upq"”
k=p
= Up i qkip
k=p ) j=k—p

n—p
_ j
up /:ZO q J —
1 — qn—p+1

1—gq

Dol le résultat.
*

& METHODE 3 # Pour montrer qu'une suite (u,),en est arithmétique (resp. géométrique), on cherche généralement
a établir qu'il existe ggch € R tel que que pour tout entier naturel n, u,.1 = u, + gqch (resp. u,41 = u, x qqch). Et
pour cela, on part du membre de gauche pour retrouver le membre de droite.

EXEmPLES 4

E Considérons la suite (u,),en définie par u, = 3n 4+ 7 pour n € N. On reconnalt le terme général de la suite
arithmétique de premier terme vy = 7 et de raison 3.

E Considérons les suites (u,)nen et (Vy)nen définies par

{ ug=1; uy=2

VneN, Upo =201 — Uy + 2

VneN, v, =u,q — U,
Démontrons que la suite (v,),en est arithmétique. Déduisons-en (par sommation) son terme général ainsi que celut
de (Un)neN-
e Soit n € N.Ona:

2u —Uu,+2—u
=u — U, +2
=V, + 2
Conclusion : la suite (v,),en est arithmétique de raison 2 et de premier terme v, avec vy = uq — uqy =1

e On en déduit :
VvneN, v, =1+ 2n

Ainsi :
Vk € N, U —up =1+ 2k
Soit ensuite n € N.
* Sin=>1:
Sommons ce qui précede, pour k allant de 0 a n — 1 (licite car n —1 > 0) :
n—1 " — A retenir... ——————
E (Ugsr — ug) = % (1 + 2k) Quand on a une expression de la
—0 0 forme ugy1 = ug + ax et que
n—1
l'on sait calculer ay, alors il
Or p ; k
L . peut étre intéressant de sommer
x par télescopage : ;
la relation ug41 — ux = ay pour
1 ensuite par télescopage, obtenir
_ up..
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X et:

k=0 k=0 k=0

(n—"T)n
2

n+(n—"1n

=n+2

Dot :
u,—1=n
Conclusion : v, = 1+ n’.
* Sin=0:
On a:
upg = T=1+ O

La relation trouvée est donc encore valable quand n = 0...

Conclusion : Vn € N, v, =1+ n“.

& METHODE 4 & Pour montrer qu'une suite n'est pas arithmétique (resp. géométrique), la donnée de trois termes
consécutifs suffit!

| EXEMPLE 5 I

Montrons que la suite (u,),en, définie par : ¥Vn € N, u, = 2n + 37, n'est ni arithmétique ni géométrique.
On a déja :

)}

up=1,; uv1=3; u,=13
e Ainsi :
Ul — Ug # Uy — uy
Donc la suite (u,),en n'est pas arithmétique.

o Lt:

Ui uy
Up uq

Donc la suite (u,),en N'est pas géométrique.

Conclusion : la suite (u,),en n'est ni arithmétique, ni géométrique.

V2  SUITES ARITHMETICO-GEOMETRIQUES

DEFINITION 4 SUITE ARITHMETICO-GEOMETRIQUE

Une suite (u,)yen est arithmético-géométrique lorsqu'il existe deux réels a et b tels que :

VneN, v,y =axu,+b

. . X Attention !
St a =0, alors la suite (u,),en est constante.

. . " , L. . Hormis ces trois cas, une suite
St b =0, alors la suite (u,)nen est géométrique. Nous exclurons ces cas-la dans la suite de notre étude. arithmético-géométrique n'est ni
Sta =1, alors la suite (u,),en est arithmétique. arithmétique, ni géométrique.

Objectif : déterminer le terme général des suites arithmético-géométriques.

A l'aide d'observations graphiques, on voit que le point d'intersection entre la droite d'équation y = ax+ b et la premiére

bissectrice a un réle important.. Et puisque a # 1, l'équation x = ax + b admet une unique solution ] (on parle
—a
de point fixe de la fonction x — ax + b), que nous notons a. Nous avons donc deux informations a ce niveau-la :

VYneN, u,.1=au,+b
a=aa+b

Ce qui donne, en soustrayant ces deux égalités membre a membre :
VneN, upp —a=alu, —a)

Ainsi, la suite (u, — a),en est géométrique ; on peut donc déterminer son terme général et en déduire celui de (u,)nen--
Ce qu'il faut retenir :
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& METHODE 5 # Pour déterminer le terme général d’une suite arithmético-géométrique :
e Résoudre l'équation x = ax + b (on note «a la solution ici).
e Poser la suite auxiliaire (v,),en définie par : Vn € N, v, = u, — «a; et vérifier qu'elle est géométrique.

e E£n déduire le terme général de (v,),en puis celut de (uy)pen (0na:Vn €N, u, = v, + a).

| EXEMPLE 6 I

upg = 1
Déterminons le terme général de la suite (u,),en définie par : 1
g ( n)ne p vn e N, Upsr = zun +3
e Soit xeR. Ona:
W +3 = W 3
X ==X —X =
2 2" 7
= x=06
e Considérons la suite (v,),en définie par :
vneN, v, =u,—6
Démontrons que (v,),en est géométrique.
Soit n € N.On a:
Vpp1 = Ups1 — 0O
=—-u,+3—-6
2
1 )
—u 3
2 ! / u,=v,+6
’ ‘
= E(V” FO)—3
1
==V,
2
, : L ) 1 : .
Par conséquent, la suite (v,),en est géométrique de raison = et de premier terme vy, avec vy = ug — 6 = —5.
e Dol ‘
1\"
vneN, v, =-5x | =
Or, pour tout n € N, u, = v, + 6..
. . 1\"
Conclusion : Vn €N, u,=6-5 5]

V.3 SUITES RECURRENTES LINEAIRES D'ORDRE 2

DEFINITIONS 5 SUITE RECURRENTE LINEAIRE D'ORDRE 2

Une suite (u,)nen est récurrente linéaire d'ordre 2 lorsqu'il existe deux réels a, b tels que (a, b) # 0 et
vneN, u,o=au,. + bu,

L'équation x*> — ax — b = 0 est alors appelée équation caractéristique de la suite (t/,)nen.

Le théoréme suivant va fournir les expressions possibles pour les suites récurrentes linéaires d'ordre 2 :

THEOREME 1

Soient a, b € R tel que (a,b) # 0 et (u,)sen une suite vérifiant : Vn € N, u,o = au,1 + bu,; et soit A le
discriminant associé & l'équation caractéristique x> — ax — b = 0.

1. SLA >0, alors l'équation x> — ax — b = 0 admet deux solutions distinctes x; et x; et :
J(a,B) ER? VN EN, u, = ax] + Bx)
2. StA =0, alors l'équation x> — ax — b = 0 admet une seule solution xp et :

J(a,B) €R? | Vn €N, u, = (an + B)x]
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— & Meéthode !

4 0On pourrait procéder autrement
p p
en disant que :

1
VYneN, upp1==-u,+3

2
D'apres la résolution faite :
6= % x 643

D'oti en soustrayant membre a
membre :

VYneN, ups1 —6==(u, —6)

1
2
Autrement dit :

1
VYneN, vy = ivﬂ

X Attention !

Attention aux priorités de calculs...
Ce résultat ne se simplifie pas !

Remarque ————

Dans le cas ol (a, b) = (0,0), on
a simplement :

VneN, up2=0

La suite (up)pen est donc nulle a
partir du rang 2.

= Pour info...

Le cas A < 0 n'est pas au pro-

4 gramme; il fait intervenir les tres
fameux nombres complexes, que
nous n'‘étudierons pas !




*
DEMONSTRATION : Détaillons-la en plusieurs points.
Supposons que A > 0 et notons x; et x, les deux racines, éventuellement égales, de x — x> —ax — b.

1. Exprimons x; + x, et x1x; en fonction de a et b.
D'apres les relations coefficients-racines, on a :

X1 +xo=0a ; xxo=—b
n—1
2. Soit n € N*. Simplifions Zx{"k_1(uk+1 — XqUg).
k=0

Ona:

n—1 n—1 n—1
n—k—1 n—k—1 n—k
E X1 (Ugsr —xqug) = % X1 Uk — E X7 Uy
k=0 k=0 k=0
n—1 n—1
n—(k+1) E n—k
= X,‘ Ugyq — X] Uy
k=0 k=0

J télescopage

= u, — X1 Ug

3. Considérons la suite (v,),en définie par: ¥n € N, v, = u,11—x1u,. Démontrons que la suite (v,),en est géométrique,
puis déduisons-en son terme général.

e SoitneN.Ona:

Vi1 = Upy2 — XqUpqq

aupeq + bu, — xqU,.4

= (a —x1)ups1 + bu,

/ question précédente

= XoUpy1 — X1 XoUp
= X2(Up+1 — Xx1Up)
= XoVn

Conclusion : la suite (v,),en est géométrique de raison x; et de premier terme vy, avec vy = Uy — XqUy.
e Dol :

VneN, v, = (u1 —xqup)xy
4. Supposons b # 0. Déduisons des questions précédentes, en distinguant les cas A > 0 et A = 0, le terme général de

la suite (Un)nen-
Soit n € N*. D'apres la question 2. :

1 n
X (Ugs1 — xqug) = up — X Ug
k=0
Mais, d'apres la question 3. :
n—1 n—1
E Xw”’k’w(uk,f\ — XjUyg) = > X%"k’ka
k=0 k=0
n—1
= > X7 k Yuy fxwuo)x_/;
—0 / b # 0, donc x; # 0 (car b = —x1x2)
n—1 v k
. ,)
= (U1 — xqup)xy ! > —
X1
k=0
e SIAN>0: .
,
Dans ce cas, x; # x, et donc — # 1. D'oli :
X1
n
n—1 v k 1 — (L)
n—1 2 n—1 il
(U1 — xpup)X > — = (U1 —xquo)x{ ————
X1 1 — =
k=0 X
n
X2
w1 (3)
= (uy — xqup)— -
X1 1—22
X1
x{ — x5
= (u1 — xup)
X1 — X2

Et ainsi, d'aprés le résultat de la question 2. rappelé en début :
n n
n X1 =X
up, = upxy + (U1 — xyup)

1 X2
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Remarque
Il est également possible, le ré-
sultat étant donné, de procéder
par récurrence (double).

— = Rappel...

‘Soitf:m—>ux2+bx+cune

fonction polynomiale de degré 2
et A sont discriminant associé.

e St A >0, alors :

Vx € R, f(x) = alx —x1)(x — x2)

ol x; et x sont les deux racines
distinctes de f.
e SiA=0, alors :

Vx € R, f(x) = a(x — xo)’

ol xp est l'unique racine de P.
Les deux cas se regroupent et on
adong, stA>0:

Vx € R, f(x) = alx —x1)(x — x2)

ol xq et x; sont éventuellement
égales (dans le cas A = 0).

En développant cette forme, on
obtient, pour tout x € R

f(x) = a(x* = (1 +x2)x + x1x)
a(x* = Sx + P)
ax’ — aSx + aP

ol S est la SOMME des racines
et P leur PRODUIT.




U1 — Xqlp X1Upg — Uy
(uo + Xy + x5

X1 — X2 X1 — X2
- ur — XoUop X7 X ug —ug
1 2 U — XU X1Up — u
X1 = X2 X1 — X2 / en posant a = : 220 ot B = 0 !
o n X1 — X2 X1 — X2
axy + Bx5
e SIAN=0: .
Dans ce cas, x; = x» et donc == = 1. D'ou :
X1
n—1 v k n—1
n—1 2 n—1
(uy — xquo)x; > (X ) = (u1 — xqug)x] > 1
1

k=0

= (U1 — xqup)nxy

Et ainsi, d'apres le résultat de la question 2. rappelé en début :

Uy = tpxX] 4 (17 — xyup)nx™"

Uy — xqu

4 10 70 n) X7
X1

= (an + B)x{

/ x1 # 0 (car b # 0)

U1l — xqUp
J en posant « = ——— et B = up

X1

= | Uo

On a donc établi les relations voulues pour tout n € N*; et on vérifie ensuite rapidement (en reprenant les expressions
de o et B dans chaque cas), qu'elles sont encore valables pour n = 0 : cest le cas!
5. Que diresi b=07?
Supposons b = 0. Dans ce cas :
Vn €N, Uy = aupyi
Autrement dit :
Vk € N*, up1 = auy

Ainsi, la suite (u,),en+ est géométrique de raison a. D'oli :
vn e N, u, = uja""

Or, a # 0 (sinon, on aurait (a, b) = (0,0)), dot, pour tout n € N* :

uy = Lgn
n —
a / n>1donc0” =0
Uy t
= —da" + (U() — 7) x 0" U U
a a J en posant a = et f=ug— —
= aa" + B0" ! !

= Rappel...
Et cette relation est encore valable pour n = 0 (il suffit de remplacer les valeurs de a et B pour le vérifier).On Poar convention, on considére que
retrouve bien le cas traité ci-dessus avec A > x0, puisque a et 0 sont alors les solutions de l'‘équation caractéristique o=1

de la suite (up)pen--
)

Pour compléter :

& METHODE 6 # Pour déterminer le terme général d’une suite récurrente linéaire d'ordre 2 :
¥ Astuce du chef ¥

Cles expressions des termes gé-

. . . . Lo . . néraux sont identiques si la suite

e Déterminer o et S en utilisant les conditions initiales de (u,),en (qui sont souvent les valeurs de ug et uy) @ il | | et définie qu Samr d'un cer
faudra résoudre un petit systeme.

e Poser et résoudre l'équation caractéristique associée.

tain rang : les valeurs de a et B
| ExempLES 7 |

s'en trouveront juste changées...
La suite de Fibonacci est une suite récurrente linéaire d'ordre 2 d'équation caractéristique x> —x — 1 = 0.

, ) - . e ug=0 ; u =1
E Déterminons le terme général de la suite (u définie par :
€2 9 (wonen déiie par < { 0 207 T B

. . ) L, , BT . S 2 - . , .
La suite (u,),en est une suite récurrente linéaire d'ordre 2 d'équation caractéristique x*—x—2 = 0 dont les solutions 9 Je vous propose cette rédaction,
sont —1 et 2 courte, claire et complete : inutile

d'introduire A, ni de détailler la
’ . . 2 ’ TR . 3
Par conséquent, il existe (a, B) € R?, que l'on considére ensuite, tels que : résolution de Uéquation caracté-

ristique !

VneN, u,=a(=1)"+8x2"

a+p=0
Or ug=0etu; =1, dou: .
—a+28=1
Mais :
a+p=0 a+p=0
B g )
—a+28=1 L L+ L 36="1
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a =

|
Wl =

™
I
w| =

Conclusion : Yn € N, u, =

Vérification ———
+7On vérifie les valeurs de ug et uq

avec le résultat final...

V.4 SUITES DEFINIES PAR Upiq = f(up)
Clest un cas tres courant dont nous avons déja rencontré des cas particuliers : les suites arithmético-géométriques. En

effet, si (un)nen est une SAG, elle vérifie une relation de la forme u,1 = f(u,), avec f une fonction affine.

Nous avons déja vu comment représenter la suite (u,),en (voir méthode 1); mais son étude sera en général plus
sophistiquée. Nous ne verrons pas de généralités, mais il est bon de retenir que :

& METHODE 7 & Pour étudier une suite (u,),en définie par "Vn € N, v, = f(u,)":
e il faut connattre le mieux possible la fonction f et essayer d'en utiliser les caractéristiques;

e il va falloir tres certainement raisonner par récurrence (pour justifier que u, existe bien pour tout n, pour étudier
les variations de (u,)sen, 0u pour montrer qu'elle est minorée/bornée...)

Cette étude sera complétée et re-
vue régulierement durant l'année.

| EXEMPLE 8 I

g ' X g - ' o ug =1
Considérons la fonction f : x — xe ", définie sur R, ainsi que la suite (u,),en définie par : { 0

VneN, u,p = f(u,)

e Dressons le tableau de variations de f sur R.
La fonction f est dérivable sur R, comme produit de fonctions dérivables sur R et, pour tout x € R :

f'(x) =e ™+ x(—e™)

=e (1 —x)
Dot :
X —00 1 +00
f'(x) 0 —

e Démontrons par récurrence que : Vn € N, 0 < v, < 1.

* Initialisation. Pour n =0 :
Immédiat, car ug = 1. L'initialisation est vérifiée.

* Hérédité. Soit n € N. Supposons que 0 < u, < 1. Démontrons que 0 < v, < 1.
Par hypothese de récurrence :

D'ol, par croissance de f sur [0;1

Autrement dit :

0< upy e
Or e~" < 1, donc par transitivité :
0<up 1
L'hérédité est ainsi établie.
Conclusion : VneN, 0 < u, < 1.
e Etudions les variations de la suite (Un)nen-
Soit n € N.On a:
Upy — Uy = fu,) —u,
=u,e” " —u,
=u,e —1)

Or:
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Remarque ————
Il n'est pas nécessaire de détailler
le signe de 1 — x..

Remarque

On aurait aussi pu démontrer
directement par récurrence :

VneN, 0 upir S up <1




% d'aprés le point précédent

u, =20

* et comme u, >0, on a —u, < 0; et dong, par croissance de exp sur R :

Dot :

On en déduit :

Autrement dit :

—up
tnle —N<0 Remarque
On a ainsi montré que (up)nen
Upse1 — U, <0 est décroissante et minorée par
0 (car bornée entre 0 et 1). Nous

Conclusion :

la suite (u,),en est décroissante. verrons dans un prochain chapitre

comment utiliser ces résultats

pour poursuivre 'étude de la suite
(Un)nENm
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