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ANALYSE

FONCTIONS DE DEUX VARIABLES

INTRODUCTION...

Les fonctions de deux variables réelles (et plus généralement les fonctions a plusieurs variables) représentent un outil tres utilisé dans les domaines
tels que 'économie, la santé, la physique... afin de modéliser des phénomenes concrets.

Dans ce chapitre, nous nous limiterons a une rapide étude des fonctions de deux variables : représentations graphiques, continuité, recherche d'extrema.
De fagon générale, tout le calcul différentiel et le calcul intégral vus sur les fonctions d'une variable peuvent s'étendre aux fonctions de deux variables :
notion de différentielle, intégrales multiples, équations aux dérivées partielles... L'ampleur de la tache serait considérable si nous devions explorer tous
ces aspects. Ces domaines sont relativement récents, essentiellement XIX®™ et XX?™ sidcle, et comme assez souvent, leur développement mathématique
est lié a des nécessités dans d'autres disciplines telles que celles mentionnées ci-dessus.
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POUR BIEN DEMARRER...

1. Dans le plan, qu'est-ce le cercle de centre le point A(xa, ya) et de rayon r > 07 Le disque fermé de centre le point A(xa, ya) et de rayon r > 07
Le disque ouvert de centre le point A(xa, ya) et de rayon r > 07?

2. Soient D une partie de R et f une fonction définie sur D. Définition du graphe de f :

3. Solent / un intervalle de R, a € [ et f une fonction définte sur /.

e Définition quantifiée de "f est continue en a":

e |a fonction f est dérivable en a lorsque :

e La fonction f est de classe & sur / lorsque :
e Si/ est un intervalle ouvert et que f est dérivable sur /, que dire de f'(a) dans le cas ol f admet un extremum local en a?
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Dans tout ce chapitre, on confondra point du plan et couple de R%. Si A est le point du plan de coordonnées (xa, i), on
écrira A = (xa, ya).

|  UN PEU DE TOPOLOGIE DANS RZ..

Commencons par représenter quelques ensembles...

EXEMPLE 1
{xyer ] —1<x<1} {xy erR I x¥+y" <1}
P P
1 1
2 12 2 12
-1+ 1+
L 2L
{xy) eR? I (x=0eTy<x)} {xy) eR? I x>y}
25 25
1 1
2 12 2 N
-1+ -1+
2L L

DEFINITION 1 Distance (HP)

Soit £ un ensemble. Une distance sur £ est une application d : £ x £ — R™ telle que :

v Y, x0) € B2 d(x, x) = d(x2, x1) (symétrie)
v VY(x,x) € E? (dx1,%) =0 e x =x) (séparation)
v Y, x0,x3) € B3, dx, x) < dxi, x3) + d(x3, x2) (inégalité triangulaire)
Remarque
PROPRIETES 1 DISTANCES EUCLIDIENNES SUR R ET R? Puisque 1/(xi —x2)* = b —xl,

la distance euclidienne dans R’
étend bien la distance euclidienne

T d:| RxR — R ) - .
L'application est une distance sur R. sur R et on imagine assez b,:en
(X1 , Xz) — |X1 — X2| la distance euclidienne sur R".
d: R?xR’> — R % Notation
, . . . . 2
L'application est une distance sur R”. Puisqu'il s'agit d'une distance

(ba,y1) barya))  — Vi —x) + (g1 — go)?

entre deux points du plan, on
notera souvent d(A, B) la distance
entre A= (x4, ya) et B = (xg, ys).

*
DEMONSTRATION :
P1. Aucune difficulté particuliére.

P2. La démonstration de l'inégalité triangulaire pour cette distance est plus technique et ne présente pas de réel intérét

LCL. *

DEFINITION 2 BOULES OUVERTES

Autrement dit : ——
. . +%
Soient A un point du plan et r € R™. Dans le plan, B(A, ) est le disque

La boule ouverte de centre A et de rayon r, notée B(A, r), est l'ensemble {M € R? | d(A, M) < r}. de centre A et de rayon r sans
son contour, c'est-a-dire sans le
cercle de centre A et de rayon r.
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DEFINITIONS 3 ENSEMBLES OUVERTS, FERMES, BORNES DANS R?

On note d la distance euclidienne sur R?. Soit D une partie de R”.

D est un ouvert de R? lorsque :
YMeD, 3Ir>0/BM,r)c D

D est un fermé de R? lorsque R?\ D (le complémentaire de D dans R?) est un ouvert de R%.
D est un ensemble borné de R? lorsqu'il existe un réel r > 0 tel que D C B(0, r).

| EXEMPLES 2 I

On ne démontre pas les résultats qui suivent, sauf le premier...
Une boule ouverte est un ouvert.

Une boule fermée (boule ouverte + contour) est un fermé.

Pour tous a, b, c,d € R tels que a < b et ¢ < d, lensemble [a, b] x [c, d] est fermé et borné.
Pour tous a, b, ¢, d € RU {£o0} tels que a < b et ¢ < d, lensemble ]a, b[x]c, d[ est ouvert.
@ et R? sont & la fois ouverts et fermés.

Une boule est bornée.

Une droite n'est pas bornée.

L'ensemble R x [—1; 2] est fermé mais non borné.

[0;1]x]0; 1[ n'est ni ouvert ni fermé.
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En gros...

Un ensemble D est un ouvert s'il
ne contient aucun point de sa

frontiére...

Autrement dit :
ﬂn ensemble est borné si on peut

l'inclure dans une boule.




' FONCTIONS DE DEUX VARIABLES REELLES

[l DEFINITION ET PREMIERS EXEMPLES

DEFINITIONS 4 FONCTION DE DEUX VARIABLES REELLES A VALEURS REELLES, APPLICATIONS PARTIELLES

On appelle fonction de deux variables réelles a valeurs réelles toute application f définie sur une partie
D de R? et & valeurs dans R.
. S , Important !
Soit (xo, yo) € D. Les applications (., yo) : x — f(x,yo) et f(xo,.) : y — f(x0,y) sont appelées {T

s . es applications partielles sont
applications partielles de fen (x0, yo)- des fonctions de R dans R'!

| ExXempLES 3 I

E1 | La distance euclidienne sur R est une fonction de deux variables réelles a valeurs réelles.

E2 | Pour tout m, n € N, la fonction (x, y) — x"y" est une fonction de deux variables réelles a valeurs réelles,

appelée fonction mondme de deux variables.
Une fonction polynomiale sur R? est une combinaison linéaire de fonctions mondmes sur R?.
Les fonctions suivantes sont polynomiales sur R? :

oy — X2+ y? s Yy —— X xy o Y= T xy o (xy) e X4 x

Les fonctions (x, i) — x et (x, y) —> y sont des fonctions polynomiales sur R%. Elles sont appelées fonctions
coordonnées ou projections.

Dans chaque cas, donnons une fonction polynomiale sur R? qui soit non nulle et vérifiant les conditions
données :

e qui s'annule une infinité de fois :

e qui s'annule sur l'axe des abscisses et sur l'axe des ordonnées :

Quel est U'ensemble de définition de la fonction f: (x, y) — %?
X“+y
5 Rappel...

Une somme de termes positifs
est nulle ssi tous ses termes sont

nuls.
[l REPRESENTATIONS GRAPHIQUES
DEFINITION 5 GRAPHE D'UNE FONCTION DE DEUX VARIABLES
Soit 1 une fonction de deux variables définie sur une partie D de R%. On appelle graphe de f l'ensemble : Important !
Le graphe d'une fonction de deux
{(X y Z) eDxR/z= f(X y)} variables a valeurs dans R est

une surface dans l'espace.

DEFINITION 6 LIGNE DE NIVEAU

Soient f une fonction de deux variables définie sur une partie D de R* et @ € R. On appelle ligne de niveau a Important !

de f l'ensemble : Une ligne de niveau d'une fonc-

tion de deux variables a valeurs
{(X‘ y) €D [ fix,y) = O} dans R est soit vide, soit un point,
soit une courbe du plan.

EXemPLES 4

| E1 | Les amateurs de randonnée sont des habitués des lignes de niveau.. Car on trouve sur les cartes ce que l'on
appelle des courbes de niveaux (ou isohypse d'un point de vue météorologique) : les courbes reliant les points du
plan d'égale altitude.
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— En gros...

On coupe la surface a 'horizon-
tale a la hauteur a et la courbe
obtenue (que lon projette sur le
plan) est la ligne de niveau a.

On peut donc voir le graphe de

f comme la surface obtenue par
union des lignes de niveau, cha-
cune étant remontée a sa ‘hauteur’

1Y
12
g4
) )

(Le niveau).
Sur une carte météo, chaque point du globe est associé a un unique couple (x, y) de coordonnées sur cette
carte.
La fonction qui a chaque point du globe associe sa pression atmosphérique au sol est une fonction de deux variables
réelles. Ses lignes de niveau sont visibles sur les cartes météo : ce sont les isobares.
Voir derniére page pour d’autres exemples et graphiques.
PROPRIETE 2
Soient D une partie de R? et f une fonction définie sur D et & valeurs dans R. Autrement dit : ——
Deux lignes de niveau différentes n'ont aucun point commun. Deux lignes de niveau sont soit
confondues soit d'intersection
vide.
*
DEMONSTRATION : Soient a, b deux réels distincts. Notons L, et L, les lignes de niveaux a et b de f.
Raisonnons par l'absurde. Supposons qu'il existe (xo, yo) € Lo N L.
Puisque (xo, yo) € L, on a:
f(X(], yg) =da
Puisque (xo, yo) € Ly, on a:
f(Xo, yo) = b
Par conséquent :
a=b>b
Ce qui est absurde.
Par conséquent, L, N L, = @. Deux lignes de niveau différentes n'ont donc aucun point commun. N
J
Il CONTINUITE DES FONCTIONS DE DEUX VARIABLES
DEFINITION 7 LIMITE FINIE EN UN POINT
Soient D une partie de R? et f une fonction définie sur D, & valeurs dans R. Soit My = (xo, yo) € D.
La fonction f admet pour limite le réel € en (xo, yo) lorsque : 2, Notations
On note alors
Ve>0, 36>0/YMeD, (d(/\/l,/\/lo) < 5= |f(M)—¢| < s) i fny) =0
(x.y)=(x0.y0)

THEOREME 1 UNICITE DE LA LIMITE.

St une fonction de deux variables posséde une limite finie en un point, alors cette limite est unique.

*
DEMONSTRATION : Analogue a celle sur les fonctions d’'une variable... N

Autrement dit : ——

DEFINITIONS 8 CONTINUITE D'UNE FONCTION DE DEUX VARIABLES frest continue en (xo, yo) lorsque
lim  f(x,y) existe et que

(x.y)=(x0.90)

Soient D une partie de R? et f une fonction définie sur D & valeurs dans R. (xy)=(x0.40

Soit (x0, yo) € D. Notons My = (xo, yo). La fonction f est continue en (xo, yo) lorsque :

Ye>0, 36>0/YMe D, (d(/\/l,Mo) <5 = |f(M) — F(My)| < g)

On dit que f est continue sur D si f est continue en chaque point de D.
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| EXEMPLES 5 I

E1 | Les fonctions (x, y) —> x et (x, y) — y sont continues sur R%.

continues en 0.

e En revanche, pour tout x € R*, on a :

2
X
f =
(. ) X2+ x?
_ !
2
Ainst : lim f _
tnst - lim (x,x)—ZA

rapproche de 5 st x = y) et n'est donc pas continue en (0, 0).

[ E2 [ Les fonctions polynomiales sont continues sur R’
E3 [ Si f est continue sur R?, alors pour tout (xg, yo) € R?, les applications partielles f(., yo) et f(xp, ) sont continues
sur R. Xy
——— si(x, 0,0
Considérons la fonction f : (x, y) — {1 X2+ y? x.y) £ (0.0) , définie sur R%.
0 st (x,y) =(0,0)

e |es applications partielles de f en 0 sont constantes égales a 0, donc sont continues sur R, et en particulier

Par conséquent : f ne posséde pas de limite en (0,0) (car f(x,y) se rapproche de 0 si x = 0 ou y = 0, mais se

PROPRIETES 3

Soient D une partie de R? ainsi que f et g deux fonctions définies sur D & valeurs dans R.

St f est continue sur D, alors pour tout A € R, Af est continue sur D.
St f et g sont continues sur D, alors f 4 g est continue sur D.
St f et g sont continues sur D, alors fg est continue sur D.
St f et g sont continues sur D et que g ne s'annule pas sur D, alors g est continue sur D.
Soit ¢ une fonction définie sur un intervalle / de R, a valeurs dans R. On a :
f continue sur D

f(D)c
¢ continue sur /

= (@of continue sur D)

*
DEMONSTRATION : Admises.

| EXEMPLES 6 I

Considérons la fonction g : (x, y) — /x? + y2.
Ona: ¥Y(x,y) € R? x*>+y? > 0. Ainsi, la fonction g est définie sur R%. Ensuite :

v la fonction f : (x, y) — x* 4 y? est continue sur R? (car polynomiale) et & valeurs dans R*;

v la fonction ¢ = |/~ est continue sur R*.

Montrons que l'application g : (x, y) — n(y) est continue sur R x R**.
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Par composition, la fonction @ o f est donc continue sur R?: autrement dit, la fonction g est continue sur R’.

— Important !

Ne regarder que la limite des
applications partielles se résume
a arriver en My par la gauche,

la droite, le haut et le bas seule-
ment |

{ Pour qu'une fonction de deux va-

riables soit continue en M, il faut
f(M) se rapproche de f(My) peu
importe la fagon dont M se rap-
proche de My... Et pas seulement
selon quelques directions particu-
lieres...

Remarque

Ces propriétés seront encore va-
lables dans le cas des fonctions
de classe €' et € sur une par-
tie de RZ, mais avant, il va falloir
définir les notions de fonction de
deux variables €' et €7 |

— # Rédaction

On veillera a détailler soigneu-
sement les continuités des fonc-
tions de deux variables.. On peut
d'ailleurs s'inspirer de cette ré-
daction pour justifier la continuité
d'une composée de deux fonctions
d'une variable...

— A retenir...

St g : (x,y) — ¢(y), alors en
notant h : (x,y) — y, ona
g=¢@oh.

Ainsi, si ¢ est continue sur /,

g est continue sur R? comme
composée de h continue sur R? &
4 valeurs dans / et ¢ continue sur /.




V' CALCUL DIFFERENTIEL

Dans toute cette partie, D désignera un ouvert de R?.

V.1

DEFINITIONS 9 DERIVEES PARTIELLES D'ORDRE 1, GRADIENT

Soit f une fonction définie sur D a valeurs dans R.

Soit (x, yo) € D. On dit que f admet une dérivée partielle d'ordre 1 par rapport a la premiére variable
en (xo, Yo) lorsque l'application f(., yo) est dérivable en xq.

f(x, yo) — f(x0, Yo)
X — X0 ’

A L'ORDRE 1...

On note alors 0d1f(xo, yo) = lim

X—=X0

On dit que f admet une dérivée partielle d'ordre 1 par rapport a la premiére variable sur D lorsquelle en
admet une en tout point de D. On note alors 0+1f : (x, y) — 01f(x, y) la fonction définie sur D, appelée
dérivée partielle de f d'ordre 1 par rapport a la premiére variable.

Lorsque f admet des dérivées partielles d'ordre 1 en (x, y) € D, on appelle gradient de f en (xo, yo), noté
Vf(x0. yo), la matrice de M +(R) définie par :

81 f(Xo, go))

Vi(x, yo) = (azf(xo,yo)

St f admet des dérivées partielles sur D, on définit alors lapplication Vf : (x, y) — Vf(x,y) sur D.

® METHODE 1 & Pour calculer les dérivées partielles d'ordre 1 :
a x pour obtenir d1f(x, y);

L Y).

e on fixe y et on dérive x — f(x, y) par rapport

e on fixe x et on dérive y — f(x, y) par rapport a y pour obtenir d,f(x

| EXEMPLE 7 I

Considérons la fonction f définie sur R? par : ¥(x, y) € R?, f(x,y) = x* + xy + e¥.
e Pour tout y € R, la fonction x — x* 4+ xy + e¥ est une fonction polynomiale en x, elle est donc dérivable

sur R.
Ainsi, f admet une dérivée partielle d'ordre 1 par rapport a la premiére variable sur R? et :

Y(x,y) € R%, 0if(x,y) =2x+y

e Pour tout x € R, la fonction i — x? + xy + e est dérivable sur R comme somme d'une fonction affine en y
et de la fonction exponentielle.
Ainsi, f admet une dérivée partielle d'ordre 1 par rapport a la seconde variable sur R? et :

Y(x,y) € R?, 0xf(x,y) = x +eY

FONCTION DE CLASSE &

DEFINITION 10

Soit f une fonction définie sur D a valeurs dans R.
On dit que f est de classe ¢ sur D lorsque les fonctions 01f et d»f existent et sont continues sur D.

& METHoDE 2 & Pour montrer qu'une fonction est de classe %', on utilise les théorémes généraux (propriétés 3,
valables avec €7), comme nous le faisions dans le cas des fonctions d'une seule variable..

Les fonctions polynomiales & deux variables sont de classe 4" sur R?.

Pour finir sur cette sous-partie :

PROPRIETE 4

Si f est de classe €' sur D, alors f est continue sur D.

*
DEMONSTRATION : Admise.
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Pourquoi ?
On se place sur un ouvert
afin que lapplication x
T(x, yo) = f(x0. yo)
X — X0
définie sur un ensemble non vide.

soit bien

Autrement dit :
f admet une dérivée partlelle
d'ordre 1 par rapport a la pre-
mieére variable lorsque l'applica-
tion partielle associée est déri-
vable !

Définition

De la méme facon, on définit 0 f...

Vocabulaire

e 0 se lit 'd rond"
e le symbole V est appelé 'na-
bla"

# Rédaction
On fixe y pour calculer 91f(x, y),

4 mais seulement dans notre téte.

On ne fixe pas y dans la rédac-
tion.

— X Attention !

L'existence des dérivées partielles
ne garantit pas la continuité de la
fonction sur tout D | En effet, on
peut encore une fois considérer la
fonction étudiée dans Exemples

5 - E4, qui possede des dérivées

4 partielles d'ordre 1 sur R’ mais

qui n'est toujours pas continue en
(0,0).

En fait, lexistence des dérivées
partielles d'ordre 1 ne fait que
garantir la continuité des deux
applications partielles.




[V2 A L'ORDRE 2..

Lorsque f admet des dérivées partielles d'ordre 1, les fonctions d4f et d»f sont des fonctions de deux variables définies
sur l'ouvert D... On peut donc se demander si elles-mémes admettent des dérivées partielles d'ordre 1...

DEFINITIONS 11 DERIVEES PARTIELLES D'ORDRE 2, HESSIENNE

Soit f une fonction définie sur D a valeurs dans R admettant des dérivées partielles d'ordre 1.

On dit que f admet une dérivée partielle d’'ordre 2 par rapport a la premiére variable sur D, notée 0%1 f,
lorsque la fonction 0¢f admet une dérivée partielle d'ordre 1 par rapport a la premiere variable sur D.

On dit que f admet une dérivée partielle d’'ordre 2 par rapport a la premiére puis la seconde variable
sur D, notée 651 f, lorsque la fonction 01f admet une dérivée partielle d'ordre 1 par rapport a la seconde
variable sur D.

Lorsque f admet des dérivées partielles d'ordre 2 en (xp, yo) € D, on appelle hessienne de f en (xo, yo),
notée V*f(xo, yo), la matrice de M;(R) définie par :

9711 (x0, yo)
9511 (%0, yo)

97,1 (x0. yo)

V2 f(x0, yo) =
0o yo) 3 (30, o)

FoNcTION DE cLAsS

DEFINITION 12

Soit f une fonction définie sur D a valeurs dans R.
On dit que f est de classe €% sur D lorsque les fonctions 95 ,f, 05,1, 01,1 et 05,1 existent et sont continues sur

D.

EXEMPLE 9

Les fonctions polynomiales & deux variables sont de classe € sur R%.

& METHoDE 3 & Pour montrer qu'une fonction est de classe €2, on utilise les théorémes généraux (propriétés 3,
valables avec ‘52), comme nous le faisions dans le cas des fonctions d'une seule variable...

On retrouve :

PROPRIETE 5

Si f est de classe €2 sur D, alors f est de classe € sur D.

*
DEMONSTRATION : Admise.

| ExempLE 10 I

Démontrons que la fonction f : (x, y) — xe ¥ est de classe € sur R? puis déterminons sa matrice hessienne en
tout (x, y) € R%.

]

THEOREME DE SCHWARZ

THEOREME 2

Si f est de classe €2 sur D, alors 6%21’ = 6%1 f. En particulier, la hessienne de f en tout (x, y) € D est symétrique.

*
DEMONSTRATION : A notre portée, mais on 'admet tout de méme.
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Remarque
© 07 ,f =01(01f)
©03,f =0,(0f)

Définition
De la méme fagon, on définit 85,1
et 6%2 f.

o

— Un peu d’histoire
Il s'agit la encore d'Hermann
Schwarz (1843-1921, allemand),
et non de Laurent Schwartz
(1915-2002, francais). En 1734,
Euler énongait que le résultat
était toujours valable, sans 'hypo-
these de continuité des dérivées
partielles d'ordre 2.. Schwarz
fournit un contre-exemple en 1873
et démontra le théoreme.

— ¥ Astuce du chef ¥ —

On utilise ce théoréme pour vé-
rifier les calculs plutdt que pour
essayer de gagner quelques se-
condes a dériver...




V' EXTREMA DE FONCTIONS DE DEUX VARIABLES

V.4 DEFINITIONS ET PREMIERS EXEMPLES

DEFINITIONS 13 EXTREMA LOCAUX ET GLOBAUX

Soient D une partie de R%, My € D et f une fonction définie sur D a valeurs réelles.

On dit que f admet un maximum local en M lorsque :
dr>0/VM e DN B(My,r), f(M) < (M)

On dit que f admet un minimum local en My lorsque :
3r>0/YMe DN BM,r), f(M) = f(M)

On dit que f admet un maximum global en M, lorsque :
YM e D, f(M) < (M)

On dit que f admet un minimum global en M, lorsque :
VM e D, f(M) = f(M)

|EXEMPLES 11 I

E Considérons la fonction f : (x, y) — x> 4+ y? + xy 4 1, définie sur R?. En reconnaissant le début d'un carré,
démontrons que f possede un minimum global et précisons en quel(s) point(s) il est atteint.

xy )
— , 0,0

Considérons la fonction f : (x, y) — {1 X2+ y? st y) 7

0 st (x,y) =(0,0)

1
>

. définie sur R?.

e Démontrons : ¥(x, y) € R?, f(x,y) <
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Autrement dit : ——

Un maximum local en My est un
maximum sur un certain voisinage
de Mo.

Remarque

Comme pour les fonctions d'une
variable, un extremum global est
en particulier un extremum local
et la réciproque est évidemment
fausse.

— & Meéthode !

Pour montrer que f(Mp) n'est pas
un extremum global, il suffit de

4 trouver un contre-exemple d'un
point M tel que f(M) > f(My)
ou f(M) < f(Mp) selon la nature
étudiée.

— Confusion d’objets | —

4 My n'est pas lextremum | My est
un point...




1
e Déduisons-en que 5 est un maximum global de f et précisons en quel(s) point(s) il est atteint.

THEOREME 3

THEOREME DES BORNES

Si une fonction est continue sur une partie fermée et bornée de R?, alors cette fonction est bornée et atteint ses
bornes sur cette partie.

*
DEMONSTRATION : Admis.

ETUDE DES EXTREMA LOCAUX

DEFINITION 14 PoOINT CRITIQUE

Soient D un ouvert de R, My = (X0, yo) € D et f une fonction de classe &' sur D a valeurs réelles.
On dit que My est un point critique de f lorsque V(M) = 01.

61 f(Xg, gg)
azf(Xg, yo)

THEOREME 4 CONDITION NECESSAIRE D'EXTREMA LOCAL SUR UN OUVERT

Soient D un ouvert de R?, My € D et f une fonction de classe &' sur D a valeurs réelles.
St f admet un extremum local en My, alors My est un point critique de f.

V.2

Autrement dit, (xo, yo) est un point critique de f lorsque { i 8

*
DEMONSTRATION : Admis.

]

& METHODE 4 # Pour démontrer qu'un point critique ne fournit pas un extremum local, on cherche a trouver une
direction sur laquelle f lut est strictement supérieure et une direction selon f lui est strictement inférieure.

| EXEMPLES 12 I

Considérons la fonction 1 : (x, y) — xy définie sur R%. Montrons que (0, 0) est unique point critique de f,
puis que f ne possede pas d'extremum local en ce point.
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Autrement dit :
St f est continue sur une partie
fermée et bornée, alors f admet
un maximum global et un mini-
mum global sur cette partie.

]

Important !

Comme dans le cas des fonctions
d'une variable, 'hypotheése "D est
un ouvert” est fondamentale. En
effet, sinon, My pourrait étre sur
la frontiere de D et fournir un
extremum local sans pour autant
que le gradient soit nul en M.

Autrement dit :

Les points critiques fournissent
des extrema locaux possibles.

X Attention !
Comme dans le cas des fonctions
d'une variable, la réciproque est
fausse.. On pense a la fonction
cube pour les fonctions d'une
variable.




THEOREME 5 NATURE DES POINTS CRITIQUES

Considérons la fonction f : (x, y) — x° 4 ¢ définie sur R%. Montrons que (0, 0) est l'unique point critique de
f, puis que f ne possede pas d'extremum local en ce point.

Soient D un ouvert de R?, (xo, yo) € D et f une fonction de classe €2 sur D & valeurs réelles.

Si (xo, yo) est un point critique de f et que les valeurs propres de V2f(xp, yo) sont strictement positives,
alors f admet un minimum local en (xo, Yo).

Si (%o, o) est un point critique de f et que les valeurs propres de V2f(xp, i) sont strictement négatives,
alors f admet un maximum local en (xo, yo).

Si (o, yo) est un point critique de f et que les valeurs propres de Y%f(xo, o) sont non nulles et de signes
opposés, alors f n'admet pas d'extremum local en (xg, yo).

Si (X0, yo) est un point critique de f et que qu'au moins une des valeurs propres de V2f(xg, yo) est nulle,
alors on ne peut pas conclure sur la nature du point critique.

* R
DEMONSTRATION : A notre portée, mais on l'admet tout de méme...

E

. on recherche les points critiques : ce sont les solutions du systeme {

® METHODE 5 & Pour étudier les points critiques d'une fonction f,
1.

on s'assure de se placer sur un ouvert et que f est €2 (4" pour les points critiques, € pour étudier leur nature
avec la hessienne) sur cet ouvert,

0if(x,y) =0

0-f(x,y) =0

Attention : ce n'est presque jamais un systeme linéaire... Tous les moyens sont bons si ce n'est pas le cas : substitution,
disjonction de cas, analyse-synthese...

3. on détermine la hessienne de f en chacun des points critiques,

ensuite on peut déterminer les valeurs propres de chaque hessienne, puis :

e dans le cas de T1, T2, et T3 on conclut directement sur 'aspect local;
e dans le cas de T4, tout est possible (point col, minimum, maximum)!

pour étudier le caractere global d'un extremum local :

e pour montrer que f possede un minimum (ou maximum) global en (xo, yo), on doit montrer :
Vix.y) € D, flx,y) = flxo0, yo) = 0

(ou < 0)
e pour montrer que f(xp, Yo) n'est pas un minimum (ou maximum) global, on peut chercher un contre-exemple de
point (x1, y1) tel que f(x1, y1) < f(x0, yo) (ou f(x1, y1) > f(x0, yo))-
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X Attention !
Dans les deux premiers cas, on
peut conclure sur un extremum
local, pas un extremum global !

Vocabulaire ——
+7On parle alors de point col ou

point selle (de cheval).

& Méthode !

Bien entendu, si 'énoncé guide,
on se laisse faire |

J'at bien écrit 'on peut déterminer
les valeurs propres’, pas ‘on doit"...

En effet :

e Aest VP de (U b) ssi X —
c d

(a+dA+ad—bc=0

e on rappelle que le produit des

racines du polynémes X? —sX +p

est égal a p et la somme a s...

Alnsi

e st ad — bc > 0, alors les deux

VP sont non nulles et de méme

signe, signe donné par le signe de

a+d

e st ad — bc < 0, alors les deux

VP sont non nulles et de signes

opposés

e si ad — bc = 0, alors au moins

une des VP est nulle

& Méthode !

Pour montrer que f(xo, yo) est un
maximum/minimum global, on peut
aussi, a x fixé, étudier le signe de
la fonction y —— f(x, y)—f(x0, yo)
(en utilisant toutes les méthodes
usuelles pour étudier le signe
d'une fonction...).




ExempLEs 13

Etudions les points critiques de la fonction f : (x, y) — x* — y? sur R%.

Démontrons que la fonction f @ (x, y) — x* 4+ xy + y> — 3x — by possede un unique point critique sur R? et
que f admet un minimum local en ce point critique. Etablissons qu'il s'agit méme d'un minimum global.
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Démontrons que la fonction f : (x, y) — 2x* + y® + 2xy — 12x — 4y + 24 posséde une minimum global sur
R? et déterminons-le.

CHAPITRE 13 - Page 14/15



| ExempLEs 14 I

Surface et lignes de niveaux correspondantes de la fonction f : (x, y) — x> — y? sur [=5;5] x [=5;5] :

Déterminons les lignes de niveaux 0 et 1 de f.

Surface et lignes de niveaux correspondantes de la fonction £ : (x, y) — x* + y? sur [=5;5] x [=5;5] :

Que dire des lignes de niveaux de f?

Surface et lignes de niveaux correspondantes de la fonction f : (x, y) — xe 20 gy (22l x [-2;2] :

\

/

_

-20 -15 -10 =05 00 05 10 15 2.0

Surface et lignes de niveaux correspondantes de la fonction f : (x, y) — xy sur [=5;5] x [=5;5] :

N\ | /7

AR
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