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AnalyseFonctions de deux variables

Introduction...

Les fonctions de deux variables réelles (et plus généralement les fonctions à plusieurs variables) représentent un outil très utilisé dans les domainestels que l’économie, la santé, la physique... afin de modéliser des phénomènes concrets.Dans ce chapitre, nous nous limiterons à une rapide étude des fonctions de deux variables : représentations graphiques, continuité, recherche d’extrema.De façon générale, tout le calcul différentiel et le calcul intégral vus sur les fonctions d’une variable peuvent s’étendre aux fonctions de deux variables :notion de différentielle, intégrales multiples, équations aux dérivées partielles... L’ampleur de la tâche serait considérable si nous devions explorer tousces aspects. Ces domaines sont relativement récents, essentiellement XIXème et XXème siècle, et comme assez souvent, leur développement mathématiqueest lié à des nécessités dans d’autres disciplines telles que celles mentionnées ci-dessus.
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Pour bien démarrer...
1. Dans le plan, qu’est-ce le cercle de centre le point A(xA, yA) et de rayon r > 0 ? Le disque fermé de centre le point A(xA, yA) et de rayon r > 0 ?Le disque ouvert de centre le point A(xA, yA) et de rayon r > 0 ?Soient A(xA, yA) un point du plan et r un réel strictement positif.

• Le cercle de centre A et de rayon r est l’ensemble {(x, y) ∈ R2 / (x − xA)2 + (y − yA)2 = r2}.
• Le disque fermé de centre A et de rayon r est l’ensemble {(x, y) ∈ R2 / (x − xA)2 + (y − yA)2 ⩽ r2}.
• Le disque ouvert de centre A et de rayon r est l’ensemble {(x, y) ∈ R2 / (x − xA)2 + (y − yA)2 < r2}.

2. Soient D une partie de R et f une fonction définie sur D. Définition du graphe de f :Le graphe de f est l’ensemble {(x, y) ∈ D × R / y = f (x)}.
3. Soient I un intervalle de R, a ∈ I et f une fonction définie sur I .

• Définition quantifiée de "f est continue en a" :
f est continue en a lorsque :

∀ε > 0, ∃δ > 0 / ∀x ∈ I,
(
|x − a| < δ =⇒ |f (x)− f (a)| < ε

) L’information |x − a| < δ équivautà x ∈]a − δ ; a + δ [.
Important !

Ou, de façon équivalente :
∀ε > 0, ∃δ > 0 / ∀x ∈ I,

(
|x − a| ⩽ δ =⇒ |f (x)− f (a)| ⩽ ε

)
• La fonction f est dérivable en a lorsque : f (x)− f (a)

x − a admet une limite finie quand x tend vers a.
Ou, de façon équivalente, lorsque f (a + h)− f (a)

h admet une limite finie quand h tend vers 0. O
• La fonction f est de classe C 1 sur I lorsque : f est dérivable sur I et que f ′ est continue sur I .
• Si I est un intervalle ouvert et que f est dérivable sur I , que dire de f ′(a) dans le cas où f admet un extremum local en a ?Dans ce cas, f ′(a) = 0.Démontrons rapidement ce résultat.On sait que f est dérivable en a et que I est ouvert, donc f est dérivable à gauche et à droite en a.

✱ Supposons que f admet un maximum en a.Notons f ′d(a) = lim
x→a
x>a

f (x)− f (a)
x − a et f ′g(a) = lim

x→a
x<a

f (x)− f (a)
x − a .Puisque f admet un maximum en a, pour tout x ∈ I suffisamment proche de a, on a f (x) ⩽ f (a). Ainsi :

✕ pour tout x < a, suffisamment proche de a :
f (x)− f (a)

x − a ⩾ 0
Et donc :

f ′g(a) ⩾ 0
✕ pour tout x > a, suffisamment proche de a :

f (x)− f (a)
x − a ⩽ 0

Et donc :
f ′d(a) ⩽ 0Or f est dérivable en a, donc f ′g(a) = f ′d(a) = f ′(a). Il vient donc :

Il est indispensable de se placersur un intervalle ouvert : a nedoit pas être sur une extrémitéde I , sinon le résultat n’est plusvalable. Pour un contre-exemple,prendre la fonction exponentiellesur [0; 1] : elle admet un minimumen 0 et pourtant, exp′(0) ̸= 0.

Important !

f ′(a) = 0

✱ Supposons que f admet un minimum en a.On procède de la même façon...
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Dans tout ce chapitre, on confondra point du plan et couple de R2 . Si A est le point du plan de coordonnées (xA, yA), onécrira A = (xA, yA).I Un peu de topologie dans R2...
Commençons par représenter quelques ensembles...
Exemple 1 {(x, y) ∈ R2 / − 1 ⩽ x ⩽ 1}

−2 −1 1 2

−2
−1

1
2

{(x, y) ∈ R2 / x2 + y2 ⩽ 1}

−2 −1 1 2

−2
−1

1
2

{(x, y) ∈ R2 / (x ⩾ 0 et y ⩽ x)}

−2 −1 1 2

−2
−1

1
2

{(x, y) ∈ R2 / x ⩾ y2}

−2 −1 1 2

−2
−1

1
2

Définition 1 Distance (HP)

Soit E un ensemble. Une distance sur E est une application d : E × E → R+ telle que :
✓ ∀(x1, x2) ∈ E2, d(x1, x2) = d(x2, x1) (symétrie)
✓ ∀(x1, x2) ∈ E2, (

d(x1, x2) = 0 ⇐⇒ x1 = x2) (séparation)
✓ ∀(x1, x2, x3) ∈ E3, d(x1, x2) ⩽ d(x1, x3) + d(x3, x2) (inégalité triangulaire)

Puisque √(x1 − x2)2 = |x1 − x2|,la distance euclidienne dans R2étend bien la distance euclidiennesur R... et on imagine assez bienla distance euclidienne sur Rn .

Remarque

Puisqu’il s’agit d’une distanceentre deux points du plan, onnotera souvent d(A, B) la distanceentre A = (xA, yA) et B = (xB , yB ).
✎ Notation

Propriétés 1 Distances euclidiennes sur R et R2

P1 L’application d : R× R −→ R+(x1, x2) 7−→ |x1 − x2| est une distance sur R.
P2 L’application d : R2 × R2 −→ R+((x1, y1), (x2, y2)) 7−→

√(x1 − x2)2 + (y1 − y2)2 est une distance sur R2 .
⋆ Démonstration :

P1. Aucune difficulté particulière.
P2. La démonstration de l’inégalité triangulaire pour cette distance est plus technique et ne présente pas de réel intérêtici. ⋆

Dans le plan, B(A, r) est le disquede centre A et de rayon r sansson contour, c’est-à-dire sans lecercle de centre A et de rayon r .
Autrement dit :

Définition 2 Boules ouvertes

Soient A un point du plan et r ∈ R+∗ .La boule ouverte de centre A et de rayon r , notée B(A, r), est l’ensemble {M ∈ R2 / d(A, M) < r}.

Chapitre 13 - Page 3/15



Définitions 3 Ensembles ouverts, fermés, bornés dans R2

On note d la distance euclidienne sur R2 . Soit D une partie de R2 .
D1 D est un ouvert de R2 lorsque :

∀M ∈ D, ∃r > 0 / B(M, r) ⊂ D

D2 D est un fermé de R2 lorsque R2 \ D (le complémentaire de D dans R2) est un ouvert de R2 .
D3 D est un ensemble borné de R2 lorsqu’il existe un réel r > 0 tel que D ⊂ B(0, r).

Un ensemble D est un ouvert s’ilne contient aucun point de safrontière...
En gros...

Un ensemble est borné si on peutl’inclure dans une boule.
Autrement dit :

Exemples 2On ne démontre pas les résultats qui suivent, sauf le premier...
E1 Une boule ouverte est un ouvert.Soient A ∈ R2 et r > 0. Montrons que B(A, r) est un ouvert de R2 .Soit M ∈ B(A, r). Montrons l’existence d’un réel strictement positif r′ tel que B(M, r′) ⊂ B(A, r).

•A

•M

r

r′

Posons r′ = r − d(A, M).
✓ Pour commencer, puisque M ∈ B(A, r), on a d(A, M) < r ; d’où :

r′ > 0
✓ Montrons ensuite que pour tout N ∈ B(M, r′), on a N ∈ B(A, r).Soit N ∈ B(M, r′). Par inégalité triangulaire, on a :

d(A, N) ⩽ d(A, M) + d(M, N)
Or N ∈ B(M, r′), donc d(M, N) < r′ . Par conséquent :

d(A, M) + d(M, N) < d(A, M) + r ′

Mais :
d(A, M) + r′ = d(A, M) + r − d(A, M)= r

On obtient finalement :
d(A, N) < rAutrement dit :
N ∈ B(A, r)On a ainsi établi :

∃r′ > 0 / B(M, r ′) ⊂ B(A, r)
Conclusion : la boule B(A, r) est ouverte.
E2 Une boule fermée (boule ouverte + contour) est un fermé.
E3 Pour tous a, b, c, d ∈ R tels que a < b et c < d, l’ensemble [a, b]× [c, d] est fermé et borné.
E4 Pour tous a, b, c, d ∈ R ∪ {±∞} tels que a < b et c < d, l’ensemble ]a, b[×]c, d[ est ouvert.
E5 ∅ et R2 sont à la fois ouverts et fermés.
E6 Une boule est bornée.
E7 Une droite n’est pas bornée.
E8 L’ensemble R× [−1; 2] est fermé mais non borné.
E9 [0; 1]×]0; 1[ n’est ni ouvert ni fermé.
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II Fonctions de deux variables réelles
II.1 Définition et premiers exemples

Définitions 4 Fonction de deux variables réelles à valeurs réelles, applications partielles

D1 On appelle fonction de deux variables réelles à valeurs réelles toute application f définie sur une partie
D de R2 et à valeurs dans R.

D2 Soit (x0, y0) ∈ D. Les applications f (., y0) : x 7−→ f (x, y0) et f (x0, .) : y 7−→ f (x0, y) sont appelées
applications partielles de f en (x0, y0). Les applications partielles sontdes fonctions de R dans R !

Important !

Exemples 3

E1 La distance euclidienne sur R est une fonction de deux variables réelles à valeurs réelles.
E2 Pour tout m, n ∈ N, la fonction (x, y) 7−→ xnym est une fonction de deux variables réelles à valeurs réelles,appelée fonction monôme de deux variables.Une fonction polynomiale sur R2 est une combinaison linéaire de fonctions monômes sur R2 .Les fonctions suivantes sont polynomiales sur R2 :

(x, y) 7−→ x2 + y2 ; (x, y) 7−→ x2 + xy + y2 ; (x, y) 7−→ 1 + xy ; (x, y) 7−→ x2 + x

E3 Les fonctions (x, y) 7−→ x et (x, y) 7−→ y sont des fonctions polynomiales sur R2 . Elles sont appelées fonctions
coordonnées ou projections.
E4 Dans chaque cas, donnons une fonction polynomiale sur R2 qui soit non nulle et vérifiant les conditionsdonnées :
• qui s’annule une infinité de fois :La fonction f : (x, y) 7−→ x − y convient.En effet, f est non nulle et, pour tout x ∈ R, f (x, x) = 0. La fonction f s’annule donc une infinité de fois (surla première bissectrice).
• qui s’annule sur l’axe des abscisses et sur l’axe des ordonnées :La fonction f : (x, y) 7−→ xy convient.En effet, f n’est pas nulle et, pour tout x ∈ R, f (x, 0) = 0 ainsi que pour tout y ∈ R, f (0, y) = 0. La fonction

f s’annule donc sur l’axe des abscisses et sur l’axe des ordonnées.
E5 Quel est l’ensemble de définition de la fonction f : (x, y) 7−→ xy

x2 + y2 ?Notons Df l’ensemble de définition de f . Soit (x, y) ∈ R2 . On a :
(x, y) ∈ Df ⇐⇒

(
f (x, y) existe)

⇐⇒ x2 + y2 ̸= 0
Or :

x2 + y2 = 0 ⇐⇒ x = y = 0Par conséquent, Df = R2 \ {(0, 0)}.

Une somme de termes positifsest nulle ssi tous ses termes sontnuls.
☞ Rappel...

II.2 Représentations graphiques
Définition 5 Graphe d’une fonction de deux variables

Soit f une fonction de deux variables définie sur une partie D de R2 . On appelle graphe de f l’ensemble :
{(x, y, z) ∈ D × R / z = f (x, y)} Le graphe d’une fonction de deuxvariables à valeurs dans R est

une surface dans l’espace.
Important !

Définition 6 Ligne de niveau

Soient f une fonction de deux variables définie sur une partie D de R2 et a ∈ R. On appelle ligne de niveau a
de f l’ensemble :

{(x, y) ∈ D / f (x, y) = a}
Une ligne de niveau d’une fonc-tion de deux variables à valeursdans R est soit vide, soit un point,soit une courbe du plan.

Important !

Exemples 4

E1 Les amateurs de randonnée sont des habitués des lignes de niveau... Car on trouve sur les cartes ce que l’onappelle des courbes de niveaux (ou isohypse d’un point de vue météorologique) : les courbes reliant les points duplan d’égale altitude.
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On coupe la surface à l’horizon-tale à la hauteur a et la courbeobtenue (que l’on projette sur leplan) est la ligne de niveau a.On peut donc voir le graphe de
f comme la surface obtenue parunion des lignes de niveau, cha-cune étant remontée à sa "hauteur"(le niveau).

En gros...

E2 Sur une carte météo, chaque point du globe est associé à un unique couple (x, y) de coordonnées sur cettecarte.La fonction qui à chaque point du globe associe sa pression atmosphérique au sol est une fonction de deux variablesréelles. Ses lignes de niveau sont visibles sur les cartes météo : ce sont les isobares.
Voir dernière page pour d’autres exemples et graphiques.

Deux lignes de niveau sont soitconfondues soit d’intersectionvide.
Autrement dit :

Propriété 2

Soient D une partie de R2 et f une fonction définie sur D et à valeurs dans R.Deux lignes de niveau différentes n’ont aucun point commun.
⋆ Démonstration : Soient a, b deux réels distincts. Notons La et Lb les lignes de niveaux a et b de f .Raisonnons par l’absurde. Supposons qu’il existe (x0, y0) ∈ La ∩ Lb .Puisque (x0, y0) ∈ La , on a :

f (x0, y0) = aPuisque (x0, y0) ∈ Lb , on a :
f (x0, y0) = bPar conséquent :

a = bCe qui est absurde.Par conséquent, La ∩ Lb = ∅. Deux lignes de niveau différentes n’ont donc aucun point commun. ⋆

III Continuité des fonctions de deux variables
Définition 7 Limite finie en un point

Soient D une partie de R2 et f une fonction définie sur D, à valeurs dans R. Soit M0 = (x0, y0) ∈ D.La fonction f admet pour limite le réel ℓ en (x0, y0) lorsque :
∀ε > 0, ∃δ > 0 / ∀M ∈ D,

(
d(M, M0) < δ =⇒ |f (M)− ℓ| < ε

) On note alorslim(x,y)→(x0 ,y0) f (x, y) = ℓ

✎ Notations

Théorème 1 Unicité de la limite.

Si une fonction de deux variables possède une limite finie en un point, alors cette limite est unique.
⋆ Démonstration : Analogue à celle sur les fonctions d’une variable... ⋆

f est continue en (x0, y0) lorsquelim(x,y)→(x0 ,y0) f (x, y) existe et quelim(x,y)→(x0 ,y0) f (x, y) = f (x0, y0).
Autrement dit :

Définitions 8 Continuité d’une fonction de deux variables

Soient D une partie de R2 et f une fonction définie sur D à valeurs dans R.
D1 Soit (x0, y0) ∈ D. Notons M0 = (x0, y0). La fonction f est continue en (x0, y0) lorsque :

∀ε > 0, ∃δ > 0 / ∀M ∈ D,
(

d(M, M0) < δ =⇒ |f (M)− f (M0)| < ε
)

D2 On dit que f est continue sur D si f est continue en chaque point de D.
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Exemples 5

E1 Les fonctions (x, y) 7−→ x et (x, y) 7−→ y sont continues sur R2 .
E2 Les fonctions polynomiales sont continues sur R2 .
E3 Si f est continue sur R2 , alors pour tout (x0, y0) ∈ R2 , les applications partielles f (., y0) et f (x0, .) sont continuessur R.
E4 Considérons la fonction f : (x, y) 7−→ { xy

x2 + y2 si (x, y) ̸= (0, 0)0 si (x, y) = (0, 0) , définie sur R2 .
• Les applications partielles de f en 0 sont constantes égales à 0, donc sont continues sur R, et en particuliercontinues en 0...
• En revanche, pour tout x ∈ R∗ , on a :

f (x, x) = x2
x2 + x2

= 12
Ainsi : lim

x→0 f (x, x) = 12 .Par conséquent : f ne possède pas de limite en (0, 0) (car f (x, y) se rapproche de 0 si x = 0 ou y = 0, mais serapproche de 12 si x = y) et n’est donc pas continue en (0, 0).
Ne regarder que la limite desapplications partielles se résumeà arriver en M0 par la gauche,la droite, le haut et le bas seule-ment !Pour qu’une fonction de deux va-riables soit continue en M0 , il faut
f (M) se rapproche de f (M0) peu
importe la façon dont M se rap-
proche de M0 ... Et pas seulementselon quelques directions particu-lières...

Important !

Propriétés 3

Soient D une partie de R2 ainsi que f et g deux fonctions définies sur D à valeurs dans R.
P1 Si f est continue sur D, alors pour tout λ ∈ R, λf est continue sur D.
P2 Si f et g sont continues sur D, alors f + g est continue sur D.
P3 Si f et g sont continues sur D, alors fg est continue sur D.
P4 Si f et g sont continues sur D et que g ne s’annule pas sur D, alors f

g est continue sur D.
P5 Soit φ une fonction définie sur un intervalle I de R, à valeurs dans R. On a :

f continue sur D
f (D) ⊂ I
φ continue sur I

 =⇒ (
φ ◦ f continue sur D

)
⋆ Démonstration : Admises. ⋆

Ces propriétés seront encore va-lables dans le cas des fonctionsde classe C 1 et C 2 sur une par-tie de R2 , mais avant, il va falloirdéfinir les notions de fonction dedeux variables C 1 et C 2 !

Remarque

Exemples 6

E1 Considérons la fonction g : (x, y) 7−→√
x2 + y2 .On a : ∀(x, y) ∈ R2, x2 + y2 ⩾ 0. Ainsi, la fonction g est définie sur R2 . Ensuite :

✓ la fonction f : (x, y) 7−→ x2 + y2 est continue sur R2 (car polynomiale) et à valeurs dans R+ ;
✓ la fonction φ = √. est continue sur R+ .Par composition, la fonction φ ◦ f est donc continue sur R2 ; autrement dit, la fonction g est continue sur R2 .

On veillera à détailler soigneu-sement les continuités des fonc-tions de deux variables... On peutd’ailleurs s’inspirer de cette ré-daction pour justifier la continuitéd’une composée de deux fonctionsd’une variable...

✍ Rédaction

E2 Montrons que l’application g : (x, y) 7−→ ln(y) est continue sur R× R+∗ .
✓ la fonction f : (x, y) 7−→ y est continue sur R× R+∗ (car polynomiale) et à valeurs dans R+∗ ;
✓ la fonction ln est continue sur R+∗ .Par composition, la fonction ln ◦f est donc continue sur R×R+∗ ; autrement dit, la fonction g est continue sur R×R+∗ .

Si g : (x, y) 7−→ φ(y), alors ennotant h : (x, y) 7−→ y, on a
g = φ ◦ h.Ainsi, si φ est continue sur I ,
g est continue sur R2 commecomposée de h continue sur R2 àvaleurs dans I et φ continue sur I .

À retenir...
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IV Calcul différentiel
Dans toute cette partie, D désignera un ouvert de R2 . On se place sur un ouvertafin que l’application x 7−→

f (x, y0)− f (x0, y0)
x − x0 soit biendéfinie sur un ensemble non vide.

Pourquoi ?

IV.1 A l’ordre 1...
Définitions 9 Dérivées partielles d’ordre 1, gradient

Soit f une fonction définie sur D à valeurs dans R.
D1 Soit (x0, y0) ∈ D. On dit que f admet une dérivée partielle d’ordre 1 par rapport à la première variable

en (x0, y0) lorsque l’application f (., y0) est dérivable en x0 .On note alors ∂1f (x0, y0) = lim
x→x0

f (x, y0)− f (x0, y0)
x − x0 .

D2 On dit que f admet une dérivée partielle d’ordre 1 par rapport à la première variable sur D lorsqu’elle enadmet une en tout point de D. On note alors ∂1f : (x, y) 7−→ ∂1f (x, y) la fonction définie sur D, appelée
dérivée partielle de f d’ordre 1 par rapport à la première variable.

D3 Lorsque f admet des dérivées partielles d’ordre 1 en (x, y) ∈ D, on appelle gradient de f en (x0, y0), noté
∇f (x0, y0), la matrice de M2,1(R) définie par :

∇f (x0, y0) = (
∂1f (x0, y0)
∂2f (x0, y0)

)
Si f admet des dérivées partielles sur D, on définit alors l’application ∇f : (x, y) 7−→ ∇f (x, y) sur D.

f admet une dérivée partielled’ordre 1 par rapport à la pre-mière variable lorsque l’applica-tion partielle associée est déri-vable !

Autrement dit :

De la même façon, on définit ∂2f ...Définition

• ∂ se lit "d rond"
• le symbole ∇ est appelé "na-bla".

Vocabulaire

♣ Méthode 1 ♣ Pour calculer les dérivées partielles d’ordre 1 :
• on fixe y et on dérive x 7−→ f (x, y) par rapport à x pour obtenir ∂1f (x, y) ;
• on fixe x et on dérive y 7−→ f (x, y) par rapport à y pour obtenir ∂2f (x, y). On fixe y pour calculer ∂1f (x, y),mais seulement dans notre tête.On ne fixe pas y dans la rédac-tion.

✍ Rédaction

Exemple 7Considérons la fonction f définie sur R2 par : ∀(x, y) ∈ R2, f (x, y) = x2 + xy + ey .
• Pour tout y ∈ R, la fonction x 7−→ x2 + xy + ey est une fonction polynomiale en x , elle est donc dérivablesur R.Ainsi, f admet une dérivée partielle d’ordre 1 par rapport à la première variable sur R2 et :

∀(x, y) ∈ R2, ∂1f (x, y) = 2x + y

• Pour tout x ∈ R, la fonction y 7−→ x2 + xy + ey est dérivable sur R comme somme d’une fonction affine en yet de la fonction exponentielle.Ainsi, f admet une dérivée partielle d’ordre 1 par rapport à la seconde variable sur R2 et :
∀(x, y) ∈ R2, ∂2f (x, y) = x + ey

Définition 10 Fonction de classe C 1

Soit f une fonction définie sur D à valeurs dans R.On dit que f est de classe C 1 sur D lorsque les fonctions ∂1f et ∂2f existent et sont continues sur D.
♣ Méthode 2 ♣ Pour montrer qu’une fonction est de classe C 1 , on utilise les théorèmes généraux (propriétés 3,valables avec C 1), comme nous le faisions dans le cas des fonctions d’une seule variable...
Exemple 8Les fonctions polynomiales à deux variables sont de classe C 1 sur R2 .Pour finir sur cette sous-partie :

Propriété 4

Si f est de classe C 1 sur D, alors f est continue sur D.
⋆ Démonstration : Admise. ⋆

L’existence des dérivées partiellesne garantit pas la continuité de lafonction sur tout D ! En effet, onpeut encore une fois considérer lafonction étudiée dans Exemples5 - E4, qui possède des dérivéespartielles d’ordre 1 sur R2 , maisqui n’est toujours pas continue en(0, 0).En fait, l’existence des dérivéespartielles d’ordre 1 ne fait quegarantir la continuité des deuxapplications partielles.

✘ Attention !
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IV.2 A l’ordre 2...Lorsque f admet des dérivées partielles d’ordre 1, les fonctions ∂1f et ∂2f sont des fonctions de deux variables définiessur l’ouvert D... On peut donc se demander si elles-mêmes admettent des dérivées partielles d’ordre 1...

• ∂21,1f = ∂1(
∂1f

)
• ∂22,1f = ∂2(

∂1f
)

Remarque

De la même façon, on définit ∂22,2fet ∂21,2f .
Définition

Définitions 11 Dérivées partielles d’ordre 2, hessienne

Soit f une fonction définie sur D à valeurs dans R admettant des dérivées partielles d’ordre 1.
D1 On dit que f admet une dérivée partielle d’ordre 2 par rapport à la première variable sur D, notée ∂21,1f ,lorsque la fonction ∂1f admet une dérivée partielle d’ordre 1 par rapport à la première variable sur D.
D2 On dit que f admet une dérivée partielle d’ordre 2 par rapport à la première puis la seconde variable

sur D, notée ∂22,1f , lorsque la fonction ∂1f admet une dérivée partielle d’ordre 1 par rapport à la secondevariable sur D.
D3 Lorsque f admet des dérivées partielles d’ordre 2 en (x0, y0) ∈ D, on appelle hessienne de f en (x0, y0),notée ∇2f (x0, y0), la matrice de M2(R) définie par :

∇2f (x0, y0) = (
∂21,1f (x0, y0) ∂21,2f (x0, y0)
∂22,1f (x0, y0) ∂22,2f (x0, y0)

)

Définition 12 Fonction de classe C 2

Soit f une fonction définie sur D à valeurs dans R.On dit que f est de classe C 2 sur D lorsque les fonctions ∂21,1f , ∂22,1f , ∂21,2f et ∂22,2f existent et sont continues sur
D.

Exemple 9Les fonctions polynomiales à deux variables sont de classe C 2 sur R2 .
♣ Méthode 3 ♣ Pour montrer qu’une fonction est de classe C 2 , on utilise les théorèmes généraux (propriétés 3,valables avec C 2), comme nous le faisions dans le cas des fonctions d’une seule variable...On retrouve :

Propriété 5

Si f est de classe C 2 sur D, alors f est de classe C 1 sur D.
⋆ Démonstration : Admise. ⋆

Exemple 10Démontrons que la fonction f : (x, y) 7−→ xe−y est de classe C 2 sur R2 puis déterminons sa matrice hessienne entout (x, y) ∈ R2 .
• La fonction (x, y) 7−→ x est polynomiale, donc C 2 sur R2 .
• ✓ La fonction (x, y) 7−→ y est polynomiale, donc C 2 sur R2 ;

✓ la fonction y 7−→ e−y est C 2 sur R.Par composition, la fonction (x, y) 7−→ e−y est C 2 sur R2 .Par conséquent, f est le produit de deux fonctions C 2 sur R2 , elle est donc C 2 sur R2 et pour tout (x, y) ∈ R2 :
∂1f (x, y) = e−y ; ∂2f (x, y) = −xe−y

puis :
∂21,1f (x, y) = 0 ; ∂21,2f (x, y) = −e−y ; ∂22,1f (x, y) = −e−y ; ∂22,2f (x, y) = xe−y

Ainsi :
∇2f (x, y) = ( 0 −e−y

−e−y xe−y

)

Théorème 2 Théorème de Schwarz

Si f est de classe C 2 sur D, alors ∂21,2f = ∂22,1f . En particulier, la hessienne de f en tout (x, y) ∈ D est symétrique.
⋆ Démonstration : A notre portée, mais on l’admet tout de même. ⋆

Il s’agit là encore d’HermannSchwarz (1843-1921, allemand),et non de Laurent Schwartz(1915-2002, français). En 1734,Euler énonçait que le résultatétait toujours valable, sans l’hypo-thèse de continuité des dérivéespartielles d’ordre 2... Schwarzfournit un contre-exemple en 1873et démontra le théorème.

Un peu d’histoire

On utilise ce théorème pour vé-rifier les calculs plutôt que pouressayer de gagner quelques se-condes à dériver...
♥ Astuce du chef ♥
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V Extrema de fonctions de deux variables
V.1 Définitions et premiers exemples

Définitions 13 Extrema locaux et globaux

Soient D une partie de R2 , M0 ∈ D et f une fonction définie sur D à valeurs réelles.
D1 On dit que f admet un maximum local en M0 lorsque :

∃r > 0 / ∀M ∈ D ∩ B(M0, r), f (M) ⩽ f (M0)
D2 On dit que f admet un minimum local en M0 lorsque :

∃r > 0 / ∀M ∈ D ∩ B(M0, r), f (M) ⩾ f (M0)
D3 On dit que f admet un maximum global en M0 lorsque :

∀M ∈ D, f (M) ⩽ f (M0)
D4 On dit que f admet un minimum global en M0 lorsque :

∀M ∈ D, f (M) ⩾ f (M0)

Un maximum local en M0 est unmaximum sur un certain voisinagede M0 .
Autrement dit :

Comme pour les fonctions d’unevariable, un extremum global esten particulier un extremum localet la réciproque est évidemmentfausse.

Remarque

Pour montrer que f (M0) n’est pasun extremum global, il suffit detrouver un contre-exemple d’unpoint M tel que f (M) > f (M0)ou f (M) < f (M0) selon la natureétudiée.

♣ Méthode !

M0 n’est pas l’extremum ! M0 estun point...
Confusion d’objets !

Exemples 11

E1 Considérons la fonction f : (x, y) 7−→ x2 + y2 + xy + 1, définie sur R2 . En reconnaissant le début d’un carré,démontrons que f possède un minimum global et précisons en quel(s) point(s) il est atteint.Pour tout (x, y) ∈ R2 , on a :
f (x, y) = x2 + y2 + xy + 1= x2 + xy + y2 + 1

= (
x + 12y

)2
− y24 + y2 + 1

= (
x + 12y

)2 + 34y2 + 1
Avec x2 + xy, on reconnaîtle début du développement de(

x + 12 y
)2 (méthode analogue àla mise sous forme canonique desfonctions polynomiales de degré2).

♣ Méthode !

On obtient ainsi :
• ∀(x, y) ∈ R2, f (x, y) ⩾ 1
• pour tout (x, y) ∈ R2

f (x, y) = 1 ⇐⇒ (
x + 12y

)2 + 34y2 + 1 = 1
⇐⇒

(
x + 12y

)2 + 34y2 = 0
⇐⇒


(

x + 12y
)2 = 034y2 = 0

⇐⇒ (x, y) = (0, 0)
Conclusion : f possède un minimum global égal à 1 et atteint en (0, 0).

Une somme de termes positifsest nulle ssi tous ses termes sontnuls.
☞ Rappel...

E2 Considérons la fonction f : (x, y) 7−→ { xy
x2 + y2 si (x, y) ̸= (0, 0)0 si (x, y) = (0, 0) , définie sur R2 .

• Démontrons : ∀(x, y) ∈ R2, f (x, y) ⩽ 12 .Soit (x, y) ∈ R2 .

✱ Si (x, y) = (0, 0) :On a f (0, 0) = 0, donc f (0, 0) ⩽ 12 .

✱ Si (x, y) ̸= (0, 0) :
f (x, y) ⩽ 12 ⇐⇒ xy

x2 + y2 ⩽
12 x2 + y2 > 0 (car (x, y) ̸= (0, 0))

⇐⇒ 2xy ⩽ x2 + y2
⇐⇒ x2 + y2 − 2xy ⩾ 0
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⇐⇒ (x − y)2 ⩾ 0
Cette dernière inégalité est vraie ; par équivalences, la première également.

Conclusion : pour tout (x, y) ∈ R2, f (x, y) ⩽ 12 .
• Déduisons-en que 12 est un maximum global de f et précisons en quel(s) point(s) il est atteint.Soit (x, y) ∈ R2 .

✱ Si (x, y) = (0, 0) :On a f (0, 0) ̸= 12 .

✱ Si (x, y) ̸= (0, 0) :
f (x, y) = 12 ⇐⇒ (x − y)2 = 0

⇐⇒ y = x

Conclusion : f admet un maximum global égal à 12 et atteint en les points de coordonnées (x, x) pourtout x ∈ R.
Théorème 3 Théorème des bornes

Si une fonction est continue sur une partie fermée et bornée de R2 , alors cette fonction est bornée et atteint sesbornes sur cette partie.
⋆ Démonstration : Admis. ⋆

Si f est continue sur une partiefermée et bornée, alors f admetun maximum global et un mini-mum global sur cette partie.
Autrement dit :

V.2 Étude des extrema locaux
Définition 14 Point critique

Soient D un ouvert de R2 , M0 = (x0, y0) ∈ D et f une fonction de classe C 1 sur D à valeurs réelles.On dit que M0 est un point critique de f lorsque ∇f (M0) = 02,1 .Autrement dit, (x0, y0) est un point critique de f lorsque {
∂1f (x0, y0) = 0
∂2f (x0, y0) = 0 .

Théorème 4 Condition nécessaire d’extrema local sur un ouvert

Soient D un ouvert de R2 , M0 ∈ D et f une fonction de classe C 1 sur D à valeurs réelles.Si f admet un extremum local en M0 , alors M0 est un point critique de f .
⋆ Démonstration : Admis. ⋆

Comme dans le cas des fonctionsd’une variable, l’hypothèse "D estun ouvert" est fondamentale. Eneffet, sinon, M0 pourrait être surla frontière de D et fournir unextremum local sans pour autantque le gradient soit nul en M0 .

Important !

Les points critiques fournissentdes extrema locaux possibles.
Autrement dit :

Comme dans le cas des fonctionsd’une variable, la réciproque estfausse... On pense à la fonctioncube pour les fonctions d’unevariable.

✘ Attention !

♣ Méthode 4 ♣ Pour démontrer qu’un point critique ne fournit pas un extremum local, on cherche à trouver unedirection sur laquelle f lui est strictement supérieure et une direction selon f lui est strictement inférieure.
Exemples 12

E1 Considérons la fonction f : (x, y) 7−→ xy définie sur R2 . Montrons que (0, 0) est l’unique point critique de f ,puis que f ne possède pas d’extremum local en ce point.
• La fonction f est polynomiale donc de classe C 1 sur R2 et, pour tout (x, y) ∈ R2 :

∂1f (x, y) = y ; ∂2f (x, y) = x

• Soit (x, y) ∈ R2 . On a :
∇f (x, y) = 02,1 ⇐⇒

{
∂1f (x, y) = 0
∂2f (x, y) = 0

⇐⇒
{

y = 0
x = 0

⇐⇒ (x, y) = (0, 0)
Conclusion : (0, 0) est l’unique point critique de f .
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• Ensuite, on a f (0, 0) = 0 puis :
✱ pour tout x ̸= 0, f (x, x) = x2 > f (0, 0) : f ne possède pas de maximum en (0, 0) ;

✱ pour tout x ̸= 0, f (x,−x) = −x2 < f (0, 0) : f ne possède pas de minimum en (0, 0).
Conclusion : (0, 0) est l’unique point critique de f , mais f n’admet ni maximum local ni minimum local en (0, 0).
E2 Considérons la fonction f : (x, y) 7−→ x3 + y3 définie sur R2 . Montrons que (0, 0) est l’unique point critique de

f , puis que f ne possède pas d’extremum local en ce point.
• La fonction f est polynomiale donc de classe C 1 sur R2 et, pour tout (x, y) ∈ R2 :

∂1f (x, y) = 3x2 ; ∂2f (x, y) = 3y2
• Soit (x, y) ∈ R2 . On a :

∇f (x, y) = 02,1 ⇐⇒
{

∂1f (x, y) = 0
∂2f (x, y) = 0

⇐⇒ (x, y) = (0, 0)
Conclusion : (0, 0) est l’unique point critique de f .

• Ensuite, on a f (0, 0) = 0 puis : Il est parfois plus simple de n’étu-dier que la limite...Affirmer que lim
x→0
x>0 f (x, x) = 0+

et lim
x→0
x<0 f (x, x) = 0− suffit pour

conclure...

Remarque

✱ pour tout x > 0, f (x, x) = 2x3 > f (0, 0) : f ne possède pas de maximum en (0, 0) ;

✱ pour tout x < 0, f (x, x) = 2x3 < f (0, 0) : f ne possède pas de minimum en (0, 0).
Conclusion : (0, 0) est l’unique point critique de f , mais f n’admet ni maximum local ni minimum local en (0, 0).

Théorème 5 Nature des points critiques

Soient D un ouvert de R2 , (x0, y0) ∈ D et f une fonction de classe C 2 sur D à valeurs réelles.
T1 Si (x0, y0) est un point critique de f et que les valeurs propres de ∇2f (x0, y0) sont strictement positives,alors f admet un minimum local en (x0, y0).
T2 Si (x0, y0) est un point critique de f et que les valeurs propres de ∇2f (x0, y0) sont strictement négatives,alors f admet un maximum local en (x0, y0).
T3 Si (x0, y0) est un point critique de f et que les valeurs propres de ∇2f (x0, y0) sont non nulles et de signesopposés, alors f n’admet pas d’extremum local en (x0, y0).
T4 Si (x0, y0) est un point critique de f et que qu’au moins une des valeurs propres de ∇2f (x0, y0) est nulle,alors on ne peut pas conclure sur la nature du point critique.

⋆ Démonstration : À notre portée, mais on l’admet tout de même... ⋆

Dans les deux premiers cas, on
peut conclure sur un extremum
local, pas un extremum global !

✘ Attention !

On parle alors de point col ou
point selle (de cheval).

Vocabulaire

Bien entendu, si l’énoncé guide,on se laisse faire !
♣ Méthode !

♣ Méthode 5 ♣ Pour étudier les points critiques d’une fonction f ,
1. on s’assure de se placer sur un ouvert et que f est C 2 (C 1 pour les points critiques, C 2 pour étudier leur natureavec la hessienne) sur cet ouvert,
2. on recherche les points critiques : ce sont les solutions du système {

∂1f (x, y) = 0
∂2f (x, y) = 0

Attention : ce n’est presque jamais un système linéaire... Tous les moyens sont bons si ce n’est pas le cas : substitution,disjonction de cas, analyse-synthèse...
3. on détermine la hessienne de f en chacun des points critiques,
4. ensuite on peut déterminer les valeurs propres de chaque hessienne, puis :

• dans le cas de T1, T2, et T3 on conclut directement sur l’aspect local ;
• dans le cas de T4, tout est possible (point col, minimum, maximum) !

5. pour étudier le caractère global d’un extremum local :
• pour montrer que f possède un minimum (ou maximum) global en (x0, y0), on doit montrer :

∀(x, y) ∈ D, f (x, y)− f (x0, y0) ⩾ 0
(ou ⩽ 0)

• pour montrer que f (x0, y0) n’est pas un minimum (ou maximum) global, on peut chercher un contre-exemple depoint (x1, y1) tel que f (x1, y1) < f (x0, y0) (ou f (x1, y1) > f (x0, y0)).

J’ai bien écrit "on peut déterminerles valeurs propres", pas "on doit"...En effet :
• λ est VP de (

a b
c d

) ssi λ2 −(a + d)λ + ad − bc = 0
• on rappelle que le produit desracines du polynômes X 2−sX +pest égal à p et la somme à s...Ainsi :
• si ad − bc > 0, alors les deuxVP sont non nulles et de mêmesigne, signe donné par le signe de
a + d
• si ad − bc < 0, alors les deuxVP sont non nulles et de signesopposés
• si ad − bc = 0, alors au moinsune des VP est nulle

♥ Astuce du chef ♥

Pour montrer que f (x0, y0) est unmaximum/minimum global, on peutaussi, à x fixé, étudier le signe dela fonction y 7−→ f (x, y)−f (x0, y0)(en utilisant toutes les méthodesusuelles pour étudier le signed’une fonction...).

♣ Méthode !
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Exemples 13

E1 Étudions les points critiques de la fonction f : (x, y) 7−→ x2 − y2 sur R2 .
• La fonction f est polynomiale donc de classe C 2 sur R2 et, pour tout (x, y) ∈ R2 :

∂1f (x, y) = 2x ; ∂2f (x, y) = −2ypuis :
∂21,1f (x, y) = 2 ; ∂21,2f (x, y) = 0

∂22,1f (x, y) = 0 ; ∂22,2f (x, y) = −2
• Soit (x, y) ∈ R2 . On a :

∇f (x, y) = 02,1 ⇐⇒
{

∂1f (x, y) = 0
∂2f (x, y) = 0

⇐⇒ (x, y) = (0, 0)
Conclusion : (0, 0) est l’unique point critique de f .

• Ensuite :
∇2f (0, 0) = (2 00 −2)

Cette matrice est diagonale, ses valeurs propres sont donc ses coefficients diagonaux.Les valeurs propres de ∇2f (0, 0) sont donc −2 et 2, qui sont non nulles et de signes opposés.
Conclusion : (0, 0) est l’unique point critique de f et f admet un point col en (0, 0).
E2 Démontrons que la fonction f : (x, y) 7−→ x2 + xy + y2 − 3x − 6y possède un unique point critique sur R2 etque f admet un minimum local en ce point critique. Établissons qu’il s’agit même d’un minimum global.
• La fonction f est polynomiale donc de classe C 2 sur R2 et, pour tout (x, y) ∈ R2 :

∂1f (x, y) = 2x + y − 3 ; ∂2f (x, y) = x + 2y − 6puis :
∂21,1f (x, y) = 2 ; ∂21,2f (x, y) = 1
∂22,1f (x, y) = 1 ; ∂22,2f (x, y) = 2

• Soit (x, y) ∈ R2 . On a :
∇f (x, y) = 02,1 ⇐⇒

{
∂1f (x, y) = 0
∂2f (x, y) = 0

⇐⇒
{2x + y = 3

x + 2y = 6
⇐⇒

L2 ← 2L2 − L1
{2x + y = 33y = 9

⇐⇒ (x, y) = (0, 3)
Conclusion : (0, 3) est l’unique point critique de f sur R2 .

• Ensuite :
∇2f (0, 3) = (2 11 2)

Cette matrice admet pour valeurs propres 1 et 3...Les valeurs propres de ∇2f (0, 3) sont donc toutes deux strictement positives.
Conclusion : (0, 3) est l’unique point critique de f sur R2 et f admet un minimum local en (0, 3).

• Montrons que f possède un minimum global en (0, 3).Pour tout (x, y) ∈ R2 :

Puisque, à x ∈ R fixé, la fonction
y 7−→ x2 + xy + y2 − 3x − 6y + 9est une fonction polynomiale dusecond degré en y à coefficientdominant positif, pour montrerqu’elle est positive sur R, onpeut également montrer que sondiscriminant est négatif ou nul(il vaut −3x2 , c’est donc bien lecas...).

♣ Méthode !

f (x, y)− f (0, 3) = x2 + xy + y2 − 3x − 6y + 9= x2 + (y − 3)x + (y − 3)2
= (

x + y − 32
)2
−

(
y − 32

)2 + (y − 3)2
= (

x + y − 32
)2 + 34 (y − 3)2

⩾ 0On a donc établi :
∀(x, y) ∈ R2, f (x, y) ⩾ f (0, 3)

Conclusion : (0, 3) est l’unique point critique de f sur R2 et f admet un minimum global en (0, 3), égalà −9.

Il n’est pas toujours aisé debien voir la forme permet-tant de conclure pour ce genrede calculs. Il aurait peut-êtreété plus simple de montrerque pour tout (h, k ) ∈ R2 ,
f (0 + h, 3 + k ) − f (0, 3) ⩾ 0...À faire !

Remarque
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E3 Démontrons que la fonction f : (x, y) 7−→ 2x2 + y2 + 2xy − 12x − 4y + 24 possède une minimum global sur
R2 et déterminons-le.
• La fonction f est polynomiale donc de classe C 1 sur R2 et, pour tout (x, y) ∈ R2 :

∂1f (x, y) = 4x + 2y − 12 ; ∂2f (x, y) = 2y + 2x − 4
• Soit (x, y) ∈ R2 . On a :

∇f (x, y) = 02,1 ⇐⇒
{

∂1f (x, y) = 0
∂2f (x, y) = 0

⇐⇒
{2x + y = 6

x + y = 2
⇐⇒

L2 ← 2L2 − L1
{2x + y = 6

y = −2
⇐⇒ (x, y) = (4, −2)

Conclusion : (4, −2) est l’unique point critique de f sur R2 .
• Montrons que f possède un minimum global en (4, −2).On a, pour tout (x, y) ∈ R2 :

f (x, y)− f (4, −2) = 2x2 + y2 + 2xy − 12x − 4y + 24− 4= 2x2 + y2 + 2xy − 12x − 4y + 20
Soit y ∈ R. Posons g : x 7−→ 2x2 + y2 + 2xy − 12x − 4y + 20. On a :

∀x ∈ R, g(x) = 2x2 + (2y − 12)x + (y2 − 4y + 20)
La fonction g est ainsi une fonction polynomiale de degré 2 ; et son discriminant, noté ∆, vérifie :

∆ = (2y − 12)2 − 8(y2 − 4y + 20)= 4y2 − 48y + 144− 8y2 + 32y − 160= −4y2 − 16y − 16= −4(y2 + 4y + 4)= −4(y + 2)2
⩽ 0

Par conséquent, g est de signe constant sur R, positif, sur R. Autrement dit :
∀x ∈ R, 2x2 + y2 + 2xy − 12x − 4y + 20 ⩾ 0

On a ainsi démontré :
∀y ∈ R, ∀x ∈ R, f (x, y)− f (4, −2) ⩾ 0

Conclusion : f possède un minimum global sure R2 , atteint en (4, −2) et égal à 4.
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Exemples 14

E1 Surface et lignes de niveaux correspondantes de la fonction f : (x, y) 7−→ x2 − y2 sur [−5; 5]× [−5; 5] :

Déterminons les lignes de niveaux 0 et 1 de f .
• Soit (x, y) ∈ R2 . On a : f (x, y) = 0 ⇐⇒ x2 = y2 ⇐⇒

 y = xou
y = −x

.
La ligne de niveau 0 de f est {(x, x) / x ∈ R

}
∪

{(x,−x) / x ∈ R
}.

• Soit (x, y) ∈ R2 . On a : f (x, y) = 1 ⇐⇒ x2 = y2 + 1 ⇐⇒
 x = √

y2 + 1ou
x = −√

y2 + 1 .
La ligne de niveau 1 de f est {(√y2 + 1, y) / y ∈ R

}
∪

{(−√
y2 + 1, y) / y ∈ R

}.
E2 Surface et lignes de niveaux correspondantes de la fonction f : (x, y) 7−→ x2 + y2 sur [−5; 5]× [−5; 5] :

Que dire des lignes de niveaux de f ? Les lignes de niveaux négatifs sont vides ; la ligne de niveau 0 est {(0, 0)}et, pour tout a > 0 la ligne de niveau a de f est le cercle de centrée (0, 0) et de rayon √a.
E3 Surface et lignes de niveaux correspondantes de la fonction f : (x, y) 7−→ xe− 12 (x2+y2) sur [−2; 2]× [−2; 2] :

E4 Surface et lignes de niveaux correspondantes de la fonction f : (x, y) 7−→ xy sur [−5; 5]× [−5; 5] :
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