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ANALYSE

FONCTIONS DE DEUX VARIABLES

INTRODUCTION...

Les fonctions de deux variables réelles (et plus généralement les fonctions a plusieurs variables) représentent un outil tres utilisé dans les domaines
tels que 'économie, la santé, la physique... afin de modéliser des phénomenes concrets.

Dans ce chapitre, nous nous limiterons a une rapide étude des fonctions de deux variables : représentations graphiques, continuité, recherche d'extrema.
De fagon générale, tout le calcul différentiel et le calcul intégral vus sur les fonctions d'une variable peuvent s'étendre aux fonctions de deux variables :
notion de différentielle, intégrales multiples, équations aux dérivées partielles... L'ampleur de la tache serait considérable si nous devions explorer tous
ces aspects. Ces domaines sont relativement récents, essentiellement XIX®™ et XX?™ sidcle, et comme assez souvent, leur développement mathématique
est lié a des nécessités dans d'autres disciplines telles que celles mentionnées ci-dessus.
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POUR BIEN DEMARRER...

1. Dans le plan, qu'est-ce le cercle de centre le point A(xa, ya) et de rayon r > 07 Le disque fermé de centre le point A(xa, ya) et de rayon r > 07?
Le disque ouvert de centre le point A(xa, ya) et de rayon r > 07?
Soient A(xa, ya) un point du plan et r un réel strictement positif.

e Le cercle de centre A et de rayon r est l'ensemble JL(x, y) €ER* [ (x — xa)> 4 (y — ya)* = /'2}.

2

e e disque fermé de centre A et de rayon r est l'ensemble {(X y) €R? [ (x —xa) 4+ (y — ya)* < rl},

e |e disque ouvert de centre A et de rayon r est l'ensemble {(X, Y) ER? | (x —xa)’ + (y —ya)’ < /’Z}.

2. Soient D une partie de R et f une fonction définie sur D. Définition du graphe de f :
Le graphe de f est l'ensemble {(X, yye DxRy= f(x)}.

3. Soient / un intervalle de R, @ € / et f une fonction définie sur /.

e Définition quantifiée de "f est continue en a":
f est continue en a lorsque :

Important ! ——
Ve >0, 30 >0/ Vxel, (|X* al < 0 = |f(x) —f(a)] < 6) L'information |x — a| < ¢ équivaut
axe€la—o;a+0[

Ou, de fagon équivalente :
Ve>0,30>0/Yxel, ([x—a| <o=I|f(x) —f(a)] < ¢)

flx) = f(a)

e |a fonction f est dérivable en a lorsque :

f(a + h)—f(a)
h

e La fonction f est de classe € sur / lorsque : f est dérivable sur / et que " est continue sur /.

admet une limite finie quand x tend vers a.

Ou, de facon équivalente, lorsque admet une limite finie quand h tend vers 0. O

e Si/ est un intervalle ouvert et que f est dérivable sur /, que dire de f(a) dans le cas ol f admet un extremum local en a?
Dans ce cas, f'(a) = 0.
Démontrons rapidement ce résultat.
On sait que f est dérivable en a et que / est ouvert, donc f est dérivable a gauche et a droite en a.
* Supposons que f admet un maximum en a.
, o f(x)—=f(a , o f(x)—=f(a
Notons fj(a) = lim T = la) et fy(a) = lim T = la) )
e X—4d g x—a
Puisque f admet un maximum en a, pour tout x & / suffisamment proche de a, on a f(x) < f(a). Ainsi :

x pour tout x < a, suffisamment proche de a :

f(x) — f(a)
E 50
X —da
Et donc :
!
fi(a) > 0
x pour tout x > a, suffisamment proche de a :
f(x) —f(a
= flo) _,
X—a
— Important !
Et donc : , Il est indispensable de se placer
f(,(G) <0 sur un intervalle ouvert : a ne
doit pas étre sur une extrémité
Or f est dérivable en a, donc f{;(a) = f}(a) = f'(a). Il vient donc : ( de /, sinon le résultat n'est plus
valable. Pour un contre-exemple,
£ -0 prendre la fonction exponentielle
(U) o sur [0; 1] : elle admet un minimum
en 0 et pourtant, exp’(0) # 0.

* Supposons que f admet un minimum en a.
On procede de la méme facon...
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Dans tout ce chapitre, on confondra point du plan et couple de R%. Si A est le point du plan de coordonnées (xa, i), on
écrira A = (xa, ya).

|  UN PEU DE TOPOLOGIE DANS RZ..

Commencons par représenter quelques ensembles...
EXEmPLE 1

{(x,g)eRZ/—1<x<1} {(X,y)ERZ/x2+gzg1}

o N 2

)

-2
— ) 72_

{xy) eR? I (x=0eTy<x)} {xy) eR? I x>y}
25 25

L =

DEFINITION 1 Distance (HP)

Soit £ un ensemble. Une distance sur £ est une application d : £ x £ — R™ telle que :

L'application d:

est une distance sur R%.

v Y, x0) € B2 d(x, x) = d(x2, x1) (symétrie)
v VY(x,x) € E? (dix1, %) =0 & x =x) (séparation)
v Y, x0,x3) € B3, dx, x) < dxi, x3) + d(x3, x2) (inégalité triangulaire)
Remarque ————
PROPRIETES 1 DISTANCES EUCLIDIENNES SUR R ET R? Puisque 1/(xi —x2)* = b —xl,
la distance euclidienne dans R?
étend bien la distance euclidienne
) — d:| RxR — R' . fete ¢
L'application est une distance sur R. sur R.. et on imagine assez bien
(X1 ) XZ) — |X1 — X2| la distance euclidienne sur R".
R’x R’ — R* % Notation ————

Puisqu'il s'agit d'une distance
entre deux points du plan, on
notera souvent d(A, B) la distance
entre A= (x4, ya) et B = (xg, ys).

(ba,y1) barya))  — Vi —x) + (g1 — go)?

*
DEMONSTRATION :

P1. Aucune difficulté particuliére.
P2. La démonstration de l'inégalité triangulaire pour cette distance est plus technique et ne présente pas de réel intérét

LCL. *

DEFINITION 2 BOULES OUVERTES

Autrement dit :
Dans le plan, B(A, r) est le disque
de centre A et de rayon r sans
son contour, c'est-a-dire sans le
cercle de centre A et de rayon r.

Soient A un point du plan et r € R*™.
La boule ouverte de centre A et de rayon r, notée B(A, r), est l'ensemble {M € R? | d(A, M) < r}.
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DEFINITIONS 3 ENSEMBLES OUVERTS, FERMES, BORNES DANS R?

On note d la distance euclidienne sur R?. Soit D une partie de R”.

D est un ouvert de R? lorsque :

En gros...

Un ensemble D est un ouvert s'il
ne contient aucun point de sa

YMeD, 3r>0/BM,r)CcD frontiere...

D est un fermé de R? lorsque R?\ D (le complémentaire de D dans R?) est un ouvert de R%.

Autrement dit : —
D est un ensemble borné de R? lorsqu'il existe un réel r > 0 tel que D C B(0, r). ﬂn ensemble est borné si on peut

l'inclure dans une boule.
| EXEmPLES 2 I

On ne démontre pas les résultats qui suivent, sauf le premier...
Une boule ouverte est un ouvert.

Soient A € R? et r > 0. Montrons que B(A, r) est un ouvert de R”.
Soit M € B(A, r). Montrons lexistence d'un réel strictement positif r' tel que B(M, r') C B(A, r).

Posons r' = r — d(A, M).

v/ Pour commencer, puisque M &€ #(A, r), on a d(A, M) < r; dou :
r'>0

v Montrons ensuite que pour tout N € B(M, '), on a N € B(A, r).
Soit N € B(M, r’). Par inégalité trianqulaire, on a :

d(A, N) < d(A, M)+ d(M, N)
Or N € B(M, r’), donc d(M, N) < r’. Par conséquent :
d(A, M) + dM, N) < d(A M)+’
Matis :

d(A, M)+ "= dA M)+ r—dA M)

=r
On obtient finalement :

dA, N)<r
Autrement dit :

N € B(A )

On a ainsi établi :

3 >0/ BM, ) C BAr)

Conclusion : la boule B(A, r) est ouverte.

| E2 [ Une boule fermée (boule ouverte + contour) est un fermé.
: E3 [ Pour tous @, b, ¢, d € R tels que a < b et ¢ < d, lensemble [a, b] x [c, d] est fermé et borné.
E4 | Pour tous a,b, ¢, d € RU {£o0} tels que a < b et ¢ < d, lensemble Ja, b[x]c, d[ est ouvert.

E5 | @ et R? sont a la fois ouverts et fermés.

E6 | Une boule est bornée.

E7 | Une droite n'est pas bornée.

[ E8 | Lensemble R x [—1;2] est fermé mais non borné.

E9 | [0; 1]x]0; 1[ n'est ni ouvert ni fermé.
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' FONCTIONS DE DEUX VARIABLES REELLES

[l DEFINITION ET PREMIERS EXEMPLES

DEFINITIONS 4 FONCTION DE DEUX VARIABLES REELLES A VALEURS REELLES, APPLICATIONS PARTIELLES

On appelle fonction de deux variables réelles a valeurs réelles toute application f définie sur une partie
D de R? et & valeurs dans R.

. S , Important !
SOL‘[. (XO., Yo) € D Les applications f(., yo) : x — f(x, yo) et f(xo,.) : y — f(xo0,y) sont appelées Les applications parficlles sont
applications partielles de f en (xo, yo).

des fonctions de R dans R !
| EXEMPLES 3 I

E1 | La distance euclidienne sur R est une fonction de deux variables réelles a valeurs réelles.

E2 | Pour tout m, n € N, la fonction (x, y) — x"y" est une fonction de deux variables réelles a valeurs réelles,
appelée fonction mondme de deux variables.

Une fonction polynomiale sur R? est une combinaison linéaire de fonctions mondmes sur R?.

Les fonctions suivantes sont polynomiales sur R? :

oy — X2+ y? s Yy —— X xy o Y= T xy o (xy) e X4 x

Les fonctions (x, i) — x et (x, y) —> y sont des fonctions polynomiales sur R%. Elles sont appelées fonctions
coordonnées ou projections.

Dans chaque cas, donnons une fonction polynomiale sur R? qui soit non nulle et vérifiant les conditions
données :

e qui s'annule une infinité de fois :
La fonction f : (x, y) — x — y convient.
En effet, f est non nulle et, pour tout x € R, f(x, x) = 0. La fonction f s'annule donc une infinité de fois (sur
la premiere bissectrice).
e qui s'annule sur l'axe des abscisses et sur l'axe des ordonnées :
La fonction f : (x, y) — xy convient.
En effet, f n'est pas nulle et, pour tout x € R, f(x,0) = 0 ainst que pour tout y € R, f(0, y) = 0. La fonction
f s'annule donc sur l'axe des abscisses et sur l'axe des ordonnées.
X
Quel est U'ensemble de définition de la fonction f: (x, y) — ﬁgz?
X“+y
Notons Dy l'ensemble de définition de f. Soit (x,y) € R’ On a :

5 Rappel...
(x,y) € Dy < (f(X y) existe) Une somme de termes positifs
' i : ' : est nulle ssi tous ses termes sont
— x+y +0 nuls.
Or:
¥ Hy'=0 & x=y=0
Par conséquent, Dy = R\ {(0,0)}.
[l2 REPRESENTATIONS GRAPHIQUES
DEFINITION 5 GRAPHE D'UNE FONCTION DE DEUX VARIABLES
Soit 1 une fonction de deux variables définie sur une partie D de R%. On appelle graphe de f l'ensemble : Important !
Le graphe d'une fonction de deux
{(X y Z) eDxR/z= f(X y)} variables a valeurs dans R est

une surface dans l'espace.

DEFINITION 6 LIGNE DE NIVEAU

Soient f une fonction de deux variables définie sur une partie D de R* et a € R. On appelle ligne de niveau a Important !
de f Uensemble : Une ligne de niveau d'une fonc-
’ tion de deux variables a valeurs
{(X‘ y) €D [ fix,y) = O} dans R est soit vide, soit un point,
soit une courbe du plan.

EXemPLES 4

| E1 | Les amateurs de randonnée sont des habitués des lignes de niveau.. Car on trouve sur les cartes ce que l'on
appelle des courbes de niveaux (ou isohypse d'un point de vue météorologique) : les courbes reliant les points du
plan d'égale altitude.
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— En gros...

On coupe la surface a 'horizon-
tale a la hauteur a et la courbe
obtenue (que lon projette sur le
plan) est la ligne de niveau a.

On peut donc voir le graphe de

f comme la surface obtenue par
union des lignes de niveau, cha-
cune étant remontée a sa ‘hauteur’

1Y
12
g4
) )

(Le niveau).
Sur une carte météo, chaque point du globe est associé a un unique couple (x, y) de coordonnées sur cette
carte.
La fonction qui a chaque point du globe associe sa pression atmosphérique au sol est une fonction de deux variables
réelles. Ses lignes de niveau sont visibles sur les cartes météo : ce sont les isobares.
Voir derniére page pour d’autres exemples et graphiques.
PROPRIETE 2
Soient D une partie de R? et f une fonction définie sur D et & valeurs dans R. Autrement dit : ——
Deux lignes de niveau différentes n'ont aucun point commun. Deux lignes de niveau sont soit
confondues soit d'intersection
vide.
*
DEMONSTRATION : Soient a, b deux réels distincts. Notons L, et L, les lignes de niveaux a et b de f.
Raisonnons par l'absurde. Supposons qu'il existe (xo, yo) € Lo N L.
Puisque (xo, yo) € L, on a:
f(X(], yg) =da
Puisque (xo, yo) € Ly, on a:
f(Xo, yo) = b
Par conséquent :
a=b>b
Ce qui est absurde.
Par conséquent, L, N L, = @. Deux lignes de niveau différentes n'ont donc aucun point commun. N
J
Il CONTINUITE DES FONCTIONS DE DEUX VARIABLES
DEFINITION 7 LIMITE FINIE EN UN POINT
Soient D une partie de R? et f une fonction définie sur D, & valeurs dans R. Soit My = (xo, yo) € D.
La fonction f admet pour limite le réel € en (xo, yo) lorsque : 2, Notations
On note alors
Ve>0, 36>0/YMeD, (d(/\/l,/\/lo) < 5= |f(M)—¢| < s) i fny) =0
(x.y)=(x0.y0)

THEOREME 1 UNICITE DE LA LIMITE.

St une fonction de deux variables posséde une limite finie en un point, alors cette limite est unique.

*
DEMONSTRATION : Analogue a celle sur les fonctions d’'une variable... N

Autrement dit : ——

DEFINITIONS 8 CONTINUITE D'UNE FONCTION DE DEUX VARIABLES frest continue en (xo, yo) lorsque
lim  f(x,y) existe et que

(x.y)=(x0.90)

Soient D une partie de R? et f une fonction définie sur D & valeurs dans R. (xy)=(x0.40

Soit (x0, yo) € D. Notons My = (xo, yo). La fonction f est continue en (xo, yo) lorsque :

Ye>0, 36>0/YMe D, (d(/\/l,Mo) <5 = |f(M) — F(My)| < g)

On dit que f est continue sur D si f est continue en chaque point de D.
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| EXEMPLES 5 I

[ ET1] Les fonctions (x, y) — x et (x, y) — y sont continues sur R?.

E Les fonctions polynomiales sont continues sur R?.

E Si f est continue sur R%, alors pour tout (xo, yo) € R?, les applications partielles f(., yo) et f(xp, .) sont continues
sur R. Xy ‘

Considérons la fonction f : (x, y) —> 1 X2 + 42 sty #0.0) , définie sur R%.

0 si (x, y) = (0,0)

e |es applications partielles de f en 0 sont constantes égales a 0, donc sont continues sur R, et en particulier
continues en 0...

e En revanche, pour tout x € R, on a :

2
X
f =
(. ) X2+ x?
_ !
2
Ainst : lim f _
tnst - lim (x,x) = 5

Par conséquent : f ne posséde pas de limite en (0,0) (car f(x,y) se rapproche de 0 si x = 0 ou y = 0, mais se

rapproche de 5 st x = y) et n'est donc pas continue en (0, 0).

PROPRIETES 3

Soient D une partie de R? ainsi que f et g deux fonctions définies sur D & valeurs dans R.

P1

St f est continue sur D, alors pour tout A € R, Af est continue sur D.

P St f et g sont continues sur D, alors f 4 g est continue sur D.

P St f et g sont continues sur D, alors fg est continue sur D.

f
P4 | Sif et g sont continues sur D et que g ne s'annule pas sur D, alors — est continue sur D.

P5| Soit ¢ une fonction définie sur un intervalle / de R, a valeurs dans R. On a :

f continue sur D
f(D)c
¢ continue sur /

= (@of continue sur D)

*
DEMONSTRATION : Admises.

| EXEMPLES 6 I

Considérons la fonction g : (x, y) — /x? + y2.

Ona: ¥Y(x,y) € R? x*>+y? > 0. Ainsi, la fonction g est définie sur R%. Ensuite :

v la fonction f : (x, y) — x* 4 y? est continue sur R? (car polynomiale) et & valeurs dans R*;

v la fonction ¢ = |/~ est continue sur R*.
Par composition, la fonction @ o f est donc continue sur R?: autrement dit, la fonction g est continue sur R’.
Montrons que l'application g : (x, y) — n(y) est continue sur R x R**.

v la fonction f : (x, y) — y est continue sur R x R™ (car polynomiale) et a valeurs dans R
v la fonction [n est continue sur R™.

Par composition, la fonction ln of est donc continue sur R x R™ : autrement dit, la fonction g est continue sur RxR™.
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— Important !

Ne regarder que la limite des
applications partielles se résume
a arriver en My par la gauche,

la droite, le haut et le bas seule-
ment |

Pour qu'une fonction de deux va-
riables soit continue en M, il faut
f(M) se rapproche de f(My) peu
importe la fagon dont M se rap-
proche de My... Et pas seulement
selon quelques directions particu-
lieres...

Remarque

Ces propriétés seront encore va-
lables dans le cas des fonctions
de classe €' et € sur une par-
tie de RZ, mais avant, il va falloir
définir les notions de fonction de
deux variables €' et €7 |

# Rédaction

On veillera a détailler soigneu-
sement les continuités des fonc-
tions de deux variables.. On peut
d'ailleurs s'inspirer de cette ré-
daction pour justifier la continuité
d'une composée de deux fonctions
d'une variable...

— A retenir...

St g : (x,y) — ¢(y), alors en
notant h : (x,y) — y, ona
g=¢@oh.

Ainsi, si ¢ est continue sur /,

g est continue sur R? comme
composée de h continue sur R? &
valeurs dans [ et ¢ continue sur /.

4




V' CALCUL DIFFERENTIEL

Dans toute cette partie, D désignera un ouvert de R?.

V.1

DEFINITIONS 9 DERIVEES PARTIELLES D'ORDRE 1, GRADIENT

Soit f une fonction définie sur D a valeurs dans R.

Soit (x, yo) € D. On dit que f admet une dérivée partielle d'ordre 1 par rapport a la premiére variable
en (xo, Yo) lorsque l'application f(., yo) est dérivable en xq.

f(x, yo) — f(x0, Yo)
X — X0 ’

A L'ORDRE 1...

On note alors 0d1f(xo, yo) = lim

X—=X0

On dit que f admet une dérivée partielle d'ordre 1 par rapport a la premiére variable sur D lorsquelle en
admet une en tout point de D. On note alors 0+1f : (x, y) — 01f(x, y) la fonction définie sur D, appelée
dérivée partielle de f d'ordre 1 par rapport a la premiére variable.

Lorsque f admet des dérivées partielles d'ordre 1 en (x, y) € D, on appelle gradient de f en (xo, yo), noté
Vf(x0. yo), la matrice de M +(R) définie par :

81 f(Xo, go))

Vi(x, yo) = (azf(xo,yo)

St f admet des dérivées partielles sur D, on définit alors lapplication Vf : (x, y) — Vf(x,y) sur D.

® METHODE 1 & Pour calculer les dérivées partielles d'ordre 1 :
a x pour obtenir d1f(x, y);

L Y).

e on fixe y et on dérive x — f(x, y) par rapport

e on fixe x et on dérive y — f(x, y) par rapport a y pour obtenir d,f(x

| EXEMPLE 7 I

Considérons la fonction f définie sur R? par : ¥(x, y) € R?, f(x,y) = x* + xy + e¥.
e Pour tout y € R, la fonction x — x* 4+ xy + e¥ est une fonction polynomiale en x, elle est donc dérivable

sur R.
Ainsi, f admet une dérivée partielle d'ordre 1 par rapport a la premiére variable sur R? et :

Y(x,y) € R%, 0if(x,y) =2x+y

e Pour tout x € R, la fonction i — x? + xy + e est dérivable sur R comme somme d'une fonction affine en y
et de la fonction exponentielle.
Ainsi, f admet une dérivée partielle d'ordre 1 par rapport a la seconde variable sur R? et :

Y(x,y) € R?, 0xf(x,y) = x +eY

FONCTION DE CLASSE &

DEFINITION 10

Soit f une fonction définie sur D a valeurs dans R.
On dit que f est de classe ¢ sur D lorsque les fonctions 01f et d»f existent et sont continues sur D.

& METHoDE 2 & Pour montrer qu'une fonction est de classe %', on utilise les théorémes généraux (propriétés 3,
valables avec €7), comme nous le faisions dans le cas des fonctions d'une seule variable..

Les fonctions polynomiales & deux variables sont de classe 4" sur R?.

Pour finir sur cette sous-partie :

PROPRIETE 4

Si f est de classe €' sur D, alors f est continue sur D.

*
DEMONSTRATION : Admise.
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Pourquoi ?
On se place sur un ouvert
afin que lapplication x
T(x, yo) = f(x0. yo)
X — X0
définie sur un ensemble non vide.

soit bien

Autrement dit :
f admet une dérivée partlelle
d'ordre 1 par rapport a la pre-
mieére variable lorsque l'applica-
tion partielle associée est déri-
vable !

Définition

De la méme facon, on définit 0 f...

Vocabulaire

e 0 se lit 'd rond"
e le symbole V est appelé 'na-
bla"

# Rédaction
On fixe y pour calculer 91f(x, y),

4 mais seulement dans notre téte.

On ne fixe pas y dans la rédac-
tion.

— X Attention !

L'existence des dérivées partielles
ne garantit pas la continuité de la
fonction sur tout D | En effet, on
peut encore une fois considérer la
fonction étudiée dans Exemples

5 - E4, qui possede des dérivées

4 partielles d'ordre 1 sur R’ mais

qui n'est toujours pas continue en
(0,0).

En fait, lexistence des dérivées
partielles d'ordre 1 ne fait que
garantir la continuité des deux
applications partielles.




[V2 A L'ORDRE 2..

Lorsque f admet des dérivées partielles d'ordre 1, les fonctions d4f et d»f sont des fonctions de deux variables définies
sur l'ouvert D... On peut donc se demander si elles-mémes admettent des dérivées partielles d'ordre 1...

DEFINITIONS 11 DERIVEES PARTIELLES D'ORDRE 2, HESSIENNE

Soit f une fonction définie sur D a valeurs dans R admettant des dérivées partielles d'ordre 1.

On dit que f admet une dérivée partielle d’'ordre 2 par rapport a la premiére variable sur D, notée 0%1 f,
lorsque la fonction 0¢f admet une dérivée partielle d'ordre 1 par rapport a la premiere variable sur D.

On dit que f admet une dérivée partielle d’'ordre 2 par rapport a la premiére puis la seconde variable

sur D, notée 651 f, lorsque la fonction 01f admet une dérivée partielle d'ordre 1 par rapport a la seconde
variable sur D.

Lorsque f admet des dérivées partielles d'ordre 2 en (xp, yo) € D, on appelle hessienne de f en (xo, yo),
notée V*f(xo, yo), la matrice de M;(R) définie par :

9711 (x0, yo)
9511 (%0, yo)

97,1 (x0. yo)

V2 f(x0, yo) =
0o yo) 3 (30, o)

FoNcTION DE cLAsS

DEFINITION 12

Soit f une fonction définie sur D a valeurs dans R.
On dit que f est de classe €% sur D lorsque les fonctions 95 ,f, 05,1, 01,1 et 05,1 existent et sont continues sur

D.

EXEMPLE 9

Les fonctions polynomiales & deux variables sont de classe € sur R%.

& METHoDE 3 & Pour montrer qu'une fonction est de classe €2, on utilise les théorémes généraux (propriétés 3,
valables avec (gz), comme nous le faisions dans le cas des fonctions d'une seule variable...

On retrouve :

PROPRIETE 5

Si f est de classe €2 sur D, alors f est de classe € sur D.

]

*
DEMONSTRATION : Admise.

| ExempLE 10 I

Démontrons que la fonction f : (x, y) — xe ¥ est de classe € sur R? puis déterminons sa matrice hessienne en
tout (x, y) € R%.

. v 5
e La fonction (x, y) — x est polynomiale, donc ¢ sur R".

° v La fonction (x, y) — y est polynomiale, donc ¢ sur R%;

v la fonction y — e ¥ est % sur R.

Par composition, la fonction (x, y) — e ¥ est €* sur R".

Par conséquent, f est le produit de deux fonctions € sur R?, elle est donc € sur R? et pour tout (x, y) € R?

oif(x,y)=e oaf(x, y) = —xe Y
puts :
07 flx,y) =0 ; 07,f(x,y) = —eY 5. f(x, y) = —e Y 95,f(x, y) = xe ¥
Ainst :
2p00 v 0 e Y
v [()‘rlj)f (70 y xe U‘)

THEOREME DE SCHWARZ

THEOREME 2

*
DEMONSTRATION : A notre portée, mais on 'admet tout de méme.
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Remarque
© 07 ,f =01(01f)
©05,f =0,(01f)

Définition
De la méme fagon, on définit 85,1
et 6%2 f.

o

— Un peu d’histoire
Il s'agit la encore d'Hermann
Schwarz (1843-1921, allemand),
et non de Laurent Schwartz
(1915-2002, francais). En 1734,
Euler énongait que le résultat
était toujours valable, sans 'hypo-
these de continuité des dérivées
partielles d'ordre 2.. Schwarz
fournit un contre-exemple en 1873
et démontra le théoreme.

— ¥ Astuce du chef ¥ —

On utilise ce théoréme pour vé-
rifier les calculs plutdt que pour
essayer de gagner quelques se-
condes a dériver...




V' EXTREMA DE FONCTIONS DE DEUX VARIABLES

V.4 DEFINITIONS ET PREMIERS EXEMPLES

DEFINITIONS 13 EXTREMA LOCAUX ET GLOBAUX

Soient D une partie de R?, My € D et f une fonction définie sur D & valeurs réelles.

On dit que f admet un maximum local en M lorsque :
Autrement dit : —

Ir>0/VvMeDn B(Mﬂr I’), f(M) < f(MO) Un maximum local en My est un
maximum sur un certain voisinage
. .. de M.
On dit que f admet un minimum local en M, lorsque : e
3r >0/ YM € DN BMy, 1), f(M) > f(M)
Remarque
. . Comme pour les fonctions d'une
On dit que f admet un maximum global en M, lorsque : variable, un extremum global est
en particulier un extremum local
VM e D, f(M) < f(My) et la réciproque est évidemment
fausse.
On dit que f admet un minimum global en M, lorsque : — & Meéthode !

Pour montrer que f(Mp) n'est pas
YM e D, f(M) = f(My) un extremum global, il suffit de
4 trouver un contre-exemple d'un
point M tel que f(M) > f(My)

| EXEMPLES 11 I ou f(M) < f(Mp) selon la nature
étudiée.

E Considérons la fonction f : (x, y) — x> 4+ y? + xy 4 1, définie sur R?. En reconnaissant le début d'un carré,
démontrons que f posseéde un minimum global et précisons en quel(s) point(s) il est atteint.

— Confusion d’objets | —

D - R2 .
Pour tout (x, L/) €R%ona: 4 My n'est pas lextremum | My est
) , un point...
fix,y) =x"4+y +xy+1
,X;’+XU+UJ+W
. 2 Ui & Méthode !
= (X + EU) 7 +y +1 Avec x> + xy, on reconnait
le début du développement de

L : 3,0 41
I VL R
2Y 49

X+ 59 (méthode analogue a

la mise sous forme canonique des
fonctions polynomiales de degré

On obtient ainsi :

o V(x,y) €R? flx,y) =1

e pour tout (x, y) € R?

1\ 3,
fuy%f1ﬁﬁ(x+2” +§¢+1—w
= + ) + 3,20
X+ — 22 =
5Y 7Y
1\°
X+ itj =0 1z Rappel...
= 3 Une somme de termes positifs
- U" =0 est nulle ssi tous ses termes sont
4 nuls.
s (x,y) = (0,0)

|C0nclusi0n : f possede un minimum global égal a 1 et atteint en (0, 0).

Xy )
. 0,0

Considérons la fonction f : (x, y) — { X%+ y? st y) #(0.0 , définie sur R%.
0 st (x,y) =(0,0)

e Démontrons : V(x, y) € R?, f(x,y) < %
Soit (x,y) € R
* St (x,y)=1(0,0):
On a f(0,0) =0, donc £(0,0) < %
* St (x,y)#(0,0):
)<y e 0 < o
2 X2ty 2 J 4 y? >0 (car (v, y) £ (0,0))

— 2y <X+ P

— X4y’ =2xy >0
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— (x—y) =0

Cette derniere inégalité est vraie; par équivalences, la premiere également.

Conclusion : pour tout (x, y) € R?, f(x,y) <

i .

e Déduisons-en que 5

est un maximum global de f et précisons en quel(s) point(s) il est atteint.
Soit (x,y) € R?.

* Si(x,y)=1(0,0):
1
Ona f(0 =
na f(0,0) # 3
% Si(x,y) #(0,0):
flx,y) == < (x—y)’=0
= y=x
Conclusion : f admet un maximum global égal a = et atteint en les points de coordonnées (x, x) pour
tout x € R.

THEOREME 3

THEOREME DES BORNES

Si une fonction est continue sur une partie fermée et bornée de R?, alors cette fonction est bornée et atteint ses

bornes sur cette partie.

Autrement dit : ——

St f est continue sur une partie
fermée et bornée, alors f admet
un maximum global et un mini-

*
DEMONSTRATION : Admis.

ETUDE DES EXTREMA LOCAUX

DEFINITION 14 PoOINT CRITIQUE

Soient D un ouvert de R, My = (X0, yo) € D et f une fonction de classe &' sur D a valeurs réelles.
On dit que My est un point critique de f lorsque V(M) = 01.

61 f(Xg, gg)
azf(Xg, yo)

THEOREME 4 CONDITION NECESSAIRE D'EXTREMA LOCAL SUR UN OUVERT

Soient D un ouvert de R?, My € D et f une fonction de classe &' sur D a valeurs réelles.
St f admet un extremum local en My, alors My est un point critique de f.

V.2

=0

Autrement dit, (xo, yo) est un point critique de f lorsque { _0

*
DEMONSTRATION : Admis.

]

& METHODE 4 # Pour démontrer qu'un point critique ne fournit pas un extremum local, on cherche a trouver une
direction sur laquelle f lut est strictement supérieure et une direction selon f lui est strictement inférieure.

| EXEMPLES 12 I

Considérons la fonction 1 : (x, y) — xy définie sur R%. Montrons que (0, 0) est unique point critique de f,
puis que f ne possede pas d'extremum local en ce point.

e La fonction f est polynomiale donc de classe € sur R? et, pour tout (x, y) € R? :

oif(x,y) =y ; 0f(x,y)=x

e Soit (x,y) € R’ Ona:

01f(x,y) =0
VX, y) =01 & { dl,ii Z;io
y=20
x=0
> (x,y)=1(0,0)

Conclusion : (0, 0) est l'unique point critique de f.

CHAPITRE 13 - Page 11/15

mum global sur cette partie.

]

Important !

Comme dans le cas des fonctions
d'une variable, 'hypotheése "D est
un ouvert” est fondamentale. En
effet, sinon, My pourrait étre sur
la frontiere de D et fournir un
extremum local sans pour autant
que le gradient soit nul en M.

Autrement dit : —
+7Les points critiques fournissent

des extrema locaux possibles.

X Attention !
Comme dans le cas des fonctions
d'une variable, la réciproque est
fausse.. On pense a la fonction
cube pour les fonctions d'une
variable.




e Ensuite, on a f(0,0) = 0 puis :

* pour tout x # 0, f(x, x) = x“ > f(0,0) : f ne posséde pas de maximum en (0, 0);
* pour tout x # 0, f(x, —x)

—x* < f(0,0) : f ne posséde pas de minimum en (0, 0).

|C0nclusl0n : (0, 0) est l'unique point critique de f, mais f n'admet ni maximum local ni minimum local en (0, 0).
| E2 | Considérons la fonction f : (x, y) — x> + ¢ définie sur R?. Montrons que (0, 0) est 'unique point critique de
f, puis que f ne posséde pas d'extremum local en ce point.

e La fonction f est polynomiale donc de classe "' sur R* et, pour tout (x, y) € R* :
o1 f(x,y) =3x% ; 0yf(x,y) = 3y’
e Soit (x,y) € R’ Ona:

oif(x, y)
af(x, y)

— (x,y)=1(0,0)

0
0

Vilx, y) =0y < { ;Z N

Conclusion : (0, 0) est l'unique point critique de f.

e [Ensuite, on a f(0,0) = 0 puis :

* pour tout x > 0, f(x, x)

(
(

|Conclusion : (0, 0) est l'unique point critique de f, mais f n'admet ni maximum local ni minimum local en (0, 0).

THEOREME 5 NATURE DES POINTS CRITIQUES

Soient D un ouvert de R?, (xo, yo) € D et f une fonction de classe €2 sur D & valeurs réelles.

= 2x> > £(0,0) : f ne possede pas de maximum en (0, 0);
% pour tout x < 0, f(x,x) = 2x> < £(0,0) : f ne posséde pas de minimum en (0, 0).

Si (xo, yo) est un point critique de f et que les valeurs propres de V2f(xp, yo) sont strictement positives,
alors f admet un minimum local en (xo, Yo).

Si (X0, yo) est un point critique de f et que les valeurs propres de V2f(xp, yo) sont strictement négatives,
alors f admet un maximum local en (xo, yo).

Si (o, yo) est un point critique de f et que les valeurs propres de Y%f(xo, o) sont non nulles et de signes
opposés, alors f n'admet pas d'extremum local en (xg, yo).

Si (x0, Yo) est un point critique de f et que qu'au moins une des valeurs propres de V?f(xg, yo) est nulle,
alors on ne peut pas conclure sur la nature du point critique.

* N
DEMONSTRATION : A notre portée, mais on l'admet tout de méme...

]

® METHODE 5 & Pour étudier les points critiques d'une fonction f,

1. on s'assure de se placer sur un ouvert et que f est €2 (4" pour les points critiques, € pour étudier leur nature
avec la hessienne) sur cet ouvert,
. L . A O f(x,y)=0
2. on recherche les points critiques : ce sont les solutions du systéeme 1f(x.y)
0xf(x,y) =0

Attention : ce n'est presque jamais un systeme linéaire... Tous les moyens sont bons si ce n'est pas le cas : substitution,
disjonction de cas, analyse-synthese...

3. on détermine la hessienne de f en chacun des points critiques,
ensuite on peut déterminer les valeurs propres de chaque hessienne, puis :

e dans le cas de T1, T2, et T3 on conclut directement sur 'aspect local ;
e dans le cas de T4, tout est possible (point col, minimum, maximum)!

pour étudier le caractere global d'un extremum local :

e pour montrer que f possede un minimum (ou maximum) global en (xo, yo), on doit montrer :
Vix.y) € D, f{x,y) = f(x0, yo) = 0

(ou < 0)
e pour montrer que f(xp, Yo) n'est pas un minimum (ou maximum) global, on peut chercher un contre-exemple de
point (x1, y1) tel que f(x1, y1) < f(x0, yo) (ou f(x1, y1) > f(x0, yo))-
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Remarque —————
Il est parfois plus simple de n'étu-
dier que la limite...
Affirmer que lim f(x,x) = 0%

0
et lim f(x,x) = 0 suffit pour
3<0

conclure...

X Attention !
Dans les deux premiers cas, on
peut conclure sur un extremum
local, pas un extremum global !

Vocabulaire ——

On parle alors de point col ou
point selle (de cheval).

& Méthode !

Bien entendu, si 'énoncé guide,
on se laisse faire |

J'ai bien écrit 'on peut déterminer
les valeurs propres’, pas 'on doit"..
En effet :

e Aest VP de (U b) ssi A2 —
c d

(a+dA+ad—bc=0

e on rappelle que le produit des
racines du polynémes X? —sX +p
est égal a p et la somme a s...
Alnsi

e st ad — bc > 0, alors les deux
VP sont non nulles et de méme
signe, signe donné par le signe de
a+d

e st ad — bc < 0, alors les deux
VP sont non nulles et de signes
opposés

e si ad — bc = 0, alors au moins
une des VP est nulle

& Méthode !

Pour montrer que f(xo, yo) est un
maximum/minimum global, on peut
aussi, a x fixé, étudier le signe de
la fonction y —— f(x, y)—f(x0, yo)
(en utilisant toutes les méthodes
usuelles pour étudier le signe
d'une fonction...).




Etudions les points critiques de la fonction f : (x, y) — x* — y? sur R%.
e La fonction f est polynomiale donc de classe € sur R? et, pour tout (x, y) € R
oif(x,y) =2x ; dof(x,y)=—2y

puis :
Oiflx,y) =2 ; 97,f(xy) =0

Bflx,y) =0 ; B,f(xy) =2
e Soit (x,y) €R* Ona:

Conclusion : (0, 0) est l'unique point critique de f.
5 (20
Vf(0,0) = (O _2)

Cette matrice est diagonale, ses valeurs propres sont donc ses coefficients diagonaux.
Les valeurs propres de V/2£(0, 0) sont donc —2 et 2, qui sont non nulles et de signes opposés.

e Ensuite :

|C0ncluslon : (0,0) est l'unique point critique de f et f admet un point col en (0, 0).

Démontrons que la fonction f @ (x, y) — x* 4+ xy + y> — 3x — by possede un unique point critique sur R? et
que f admet un minimum local en ce point critique. Etablissons qu'il s'agit méme d'un minimum global.

e La fonction 1 est polynomiale donc de classe €% sur R? et, pour tout (x, y) € R? :
oiflx,y)=2x+y—3 ; df(x,y)=x+2y—06

puts :

Ofaflx,y) =2 07,f(x.y) =1
Bafly) =1 95,f(x.y) =2
e Soit (x,y) €R* Ona:

d11f(x, t
Vi(x, y) = 0, — {dlfzx é; 0
X+ y=3
=
X+ 2y =06
X+ y=3
=
Ly« 2Ly — Ly 3y =

Conclusion : (0, 3) est 'unique point critique de f sur R%.

e Ensuite : S — & Méthode !
sz((), 3) = (1 2) Puisque, a x € R fixé, la fonction
yr— X’ +xy+y’ —3x—6y+9

est une fonction polynomiale du

Cette matrice admet pour valeurs propres 1 et 3. . s o
second degré en y a coefficient

Les valeurs propres de Y?f(0, 3) sont donc toutes deux strictement positives. dominant positif, pour montrer
Conclusion : (0, 3) est l'unique point critique de f sur R? et f admet un minimum local en (0, 3). qu'elle est positive sur R, on
. o . peut également montrer que son
e Montrons que f posseéde un minimum global en (0, 3). discriminant est négatif ou nul
Pour tout (X, g) [ R’ - (il vaut —3x?, cest donc bien le
4 cas.).
2 2
fix,y) —1(0,3) =x"+xy+y-—3x—06y+9 _ Remarque
=X (] — J)X + (J — 3) Il n'est pas toujours aisé de
bien voir la forme permet-
Lj -3 y—3 tant de conclure pour ce genre
- 2 / - 3) de calculs. Il aurait peut-étre
été plus simple de montrer
( U -3 )/7 3 que pour tout (h, k) € R?,
= ' + >y — 3)° 0+ h,3+ k) —f(0,3) > 0.
2 4 4 Ataire |
>0

On a donc établi :
V(x, y) € R%, f(x,y) > 1(0,3)

Conclusion : (0, 3) est l'unique point critique de f sur R” et f admet un minimum global en (0, 3), égal
a—9.
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Démontrons que la fonction f : (x, y) — 2x* + y® + 2xy — 12x — 4y + 24 posséde une minimum global sur
R’ et déterminons-le.

e La fonction f est polynomiale donc de classe @' sur R? et, pour tout (x, y) € R* -
oflx,y) =4x+2y =12 ; 0f(x,y) =2y +2x—4

e Soit (x,y) €R* Ona:

[ 0:f(x,y) =0
Vi(x, y) =021 = dleX z; =0
—2x+U:6
— 1
| X+y=
[2x+y =6
— 1
Ly« 2L — L4 y=—2
— X y) =42

Conclusion : (4, —2) est l'unique point critique de f sur R%.

e Montrons que / posséde un minimum global en (4, —2).
On a, pour tout (x,y) € R? :

Fix,y) — (4, —2) = 2x* + ¢y + 2xy — 12x — 4y + 24 — 4
=2X° +y? +2xy —12x —4y + 20
Soit y € R. Posons g : x — 2x” + ¢” + 2xy — 12x — 4y +20. On a :
Vx € R, g(x) = 2x* + 2y — 12)x + (y° — 4y + 20)
La fonction g est ainst une fonction polynomiale de degré 2; et son discriminant, noté A, vérifie :

A= (2y —12)> = 8(y* — 4y + 20)
= 4y? — 48y + 144 — 8y” + 32y — 160

= —4y> — 16y — 16
= —4y* + 4y +4)
=4y +2)

<0
Par conséquent, g est de signe constant sur R, positif, sur R. Autrement dit :
Vx €R, 2¢* + >+ 2xy —12x —4y +20 >0

On a ainst démontré :
VyeR, VxeR, fix,y—14,-2)>0

Conclusion : f posséde un minimum global sure R?, atteint en (4, —2) et égal & 4.
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| ExempLEs 14 |

Déterminons les lignes de niveaux 0 et 1 de f.

2.0

N

e Soit (x,y) €R% Ona:f(x,y)=0 < x°

Surface et lignes de niveaux correspondantes de la fonction f : (x, y) — x> — y? sur [=5;5] x [=5;5] :

=y =

e Soit (x,y) ER* Ona:flx,y) =1 ¥=y"+1 &

La ligne de niveau 1 de fest {(v/y?+1,y) | y EeR}U{(—/y? +1.y) |

Surface et lignes de niveaux correspondantes de la fonction £ : (x, y) — x* + y? sur [=5;5] x [=5;5] :

y=x
ou
y=—x

La ligne de niveau O de f est {(X,X) | x e R} U {(X —X) [ x € R}.

N

ou .
x=—/y’+1
y €R}

7

Que dire des lignes de niveaux de f? Les lignes de niveaux négatifs sont vides; la ligne de niveau 0 est {(0,0)} et,
pour tout a > 0 la ligne de niveau a de f est le cercle de centrée (0,0) et de rayon \/a.

E3 I Surface et lignes de niveaux correspondantes de la fonction f : (x, y) — xe 20 gy (22l x [-2;2] :

\

/

\

_

-2.0 -15 -1.0

-05 00 05 10 15 20

Surface et lignes de niveaux correspondantes de la fonction f : (x, y) — xy sur [=5;5] x [=5;5] :

/
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