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ProbabilitésConvergence de suites de variables aléatoires

Introduction...
Ce chapitre met l’accent sur deux théorèmes fondamentaux en théorie des probabilités et en statistiques : la loi faible des grands nombres et lethéorème central limite.La loi faible des grands nombres est due à Pafnouti Tchebychev (1821-1894, russe) qui la démontra en utilisant une inégalité énoncée par Irénée-JulesBienaymé (1796-1878, français) et démontrée par Tchebychev lui-même.Quant au théorème central limite : des cas particuliers ont d’abord été démontrés par Abraham de Moivre (1667-1754, français) et Laplace, maisconcernant la version générale, qui l’a démontrée en premier ? En 1920, il semble que Alexandre Liapounov (1857-1918, russe) et Jarl WaldemarLindeberg (1876-1932, finlandais) en aient tous deux fourni une démonstration différente. En 1922, Paul Lévy (1886-1971, français) démontre lethéorème qui porte son nom, dont le TCL est une conséquence immédiate, et permet ainsi à Lindeberg d’en donner une version avec des hypothèsesamoindries ! Comme bien souvent, ce théorème est le fruit de collaborations plus ou moins volontaires entre des mathématiciens d’époques et denationalités variées.
Il est important de noter que l’Histoire se rapproche ! Nous sommes à présent au début du XXème siècle, qui demeurera sans aucun doute le siècle del’essor des probabilités comme branche légitime des mathématiques.
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Dans tout le chapitre, (Ω, A,P) désigne un espace probabilisé et X une variable aléatoire définie sur cet espace. Sauf précision, les variablesaléatoires étudiées seront quel-conques (discrètes, à densité ou nidiscrète ni à densité).
Remarque

I Inégalités de Markov et Bienaymé-Tchebychev
Selon le programme, la connais-sance de l’inégalité de Mar-kov n’est pas exigible, mais ellesemble parfois nécessaire à l’orald’HEC... Il faut, dans tous les cas,en connaître des démonstrations.

Remarque

• Si a ⩽ E(X ), l’inégalité n’ap-porte rien, car alors E(X )
a ⩾ 1...

• Le résultat est donc intéressantsi a est grand par rapport à E(X ).Dans ce cas, l’inégalité affirmequ’il est peu probable que Xprenne des valeurs trop grandespar rapport à E(X ).
• Cette inégalité a l’avantaged’être valable pour toutes lesvariables aléatoires positives ;avantage : elle est très générale.Inconvénient : la majoration de
P
([X ⩾ a]) n’est souvent pas trèsfine.

Interprétation

Théorème 1 Inégalité de Markov
Si X est à valeurs positives et admet une espérance, alors :

∀a ∈ R+∗, P
([X ⩾ a]) ⩽ E(X )

a

⋆ Démonstration : Soit a ∈ R+∗ .
• Si X est discrète.

aP
([X ⩾ a]) = a

∑
x∈X (Ω), x⩾a

P
([X = x ])

= ∑
x∈X (Ω), x⩾a

aP
([X = x ])

∀x ⩾ a, aP
([X = x ]) ⩽ xP

([X = x ]) (car une probabilité est positive)
⩽

∑
x∈X (Ω), x⩾a

xP
([X = x ])

X est à valeurs positives
⩽
∑

x∈X (Ω) xP
([X = x ])︸ ︷︷ ︸=E(X )D’où le résultat, puisque a > 0.

• Si X est à densité.En notant f une densité de X :
aP
([X ⩾ a]) = a

∫ +∞

a
f (x)dx

= ∫ +∞

a
af (x)dx

∀x ⩾ a, af (x) ⩽ xf (x) (car f positive) et par croissance del’intégrale
⩽
∫ +∞

a
xf (x)dx

a > 0 et pour tout x ∈ R+, xf (x) ⩾ 0
⩽

∫ +∞

0 xf (x)dx︸ ︷︷ ︸=E(X ), car X (Ω) ⊂ R+
D’où le résultat, puisque a > 0.

• Dans le cas où X est quelconque : Question classique 37.
⋆

Exemple 1Soient r ∈ N∗ et X une variable aléatoire sur (Ω, A,P) admettant un moment d’ordre r . Démontrons :
∀α ∈ R+∗, P

([|X | ⩾ α ]) ⩽ E
(
|X |r

)
α r

On a même la résultat suivant :si f est une fonction strictementcroissante et positive sur un in-tervalle I , si X est une variablealéatoire à valeurs dans I , alorspour tout b ∈ I tel que f (b) > 0,on a : P([X ⩾ b]) ⩽ E
(
f (X ))
f (b) .

☞ Pour info...

Soit a ∈ R+∗ .
✓ |X |r est à valeurs positives,
✓ |X |r admet une espérance, car X admet un moment d’ordre r (donc |X r | admet une espérance et |X r | = |X |r ).Ainsi, d’après l’inégalité de Markov :

∀b ∈ R+∗, P
([|X |r ⩾ b]) ⩽ E

(
|X |r

)
bEn prenant b = ar , licite car ar > 0 :

P
([|X |r ⩾ ar ]) ⩽ E

(
|X |r

)
arOr, par stricte croissance de la fonction .r sur R+ (|X | et a sont dans R+) :

La stricte croissance est né-cessaire, puisqu’il s’agit en faitd’établir que pour tout ω ∈ Ω,
|X |r (ω) ⩾ ar ⇐⇒ |X|(ω) ⩾ a.Et on sait que la stricte monoto-nie est nécessaire pour "désappli-quer" une fonction, même sur desinégalités larges.

Important !

[|X |r ⩾ ar ] = [|X | ⩾ a]D’où :
P
([|X |r ⩾ ar ]) = P([|X | ⩾ a])

Conclusion : P([|X | ⩾ a]) ⩽ E
(
|X |r

)
ar .
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En conséquence de l’inégalité de Markov :
X admet une variance si, etseulement si, X admet un mo-ment d’ordre 2.

☞ Rappel...

L’inégalité de BT est un cas d’in-
égalité de concentration.Elle permet d’estimer la proba-bilité qu’une variable aléatoires’écarte de sa moyenne.Tout comme l’inégalité de Markov,elle est générale mais la majora-tion fournie n’est pas très fine...On peut déjà remarquer que sil’on prend a ⩽ σ (X ), l’inégalitéde BT est inutile !

☞ Pour info...

Théorème 2 Inégalité de Bienaymé-Tchebychev
Si X admet une variance, alors :

∀a ∈ R+∗, P
([|X − E(X )| ⩾ a]) ⩽ V(X )

a2
⋆ Démonstration : Supposons que X admette une variance. Soit a ∈ R+∗ .On sait que

V(X ) = E
((

X − E(X ))2)
Appliquons l’inégalité de Markov à la variable aléatoire (X − E(X ))2 :

✓
(
X − E(X ))2 est à valeurs positives,

✓
(
X − E(X ))2 admet une espérance, car X admet une variance.Ainsi, d’après l’inégalité de Markov :

∀b ∈ R+∗, P
([(

X − E(X ))2 ⩾ b
])

⩽
E
((

X − E(X ))2)
bEn prenant b = a2 , licite car a2 > 0, et par définition de V(X ) :

P
([(

X − E(X ))2 ⩾ a2]) ⩽ V(X )
a2

Or, par stricte croissance de la fonction √. sur R+ (a ∈ R+) :[(
X − E(X ))2 ⩾ a2] = [|X − E(X )| ⩾ a] ∀x ∈ R,

√
x2 = |x|.Important !

D’où :
P
([(

X − E(X ))2 ⩾ a2]) = P([|X − E(X )| ⩾ a])
Conclusion : P([|X − E(X )| ⩾ α ]) ⩽ V(X )

α2 .
A a fixé, on voit que plus V(X )est petite, X aura tendance àêtre proche de E(X ). La variancetraduit bien une mesure de dis-persion de la variable aléatoireautour de son espérance.

Remarque

⋆

Exemples 2E1 Lors de l’épreuve de mathématiques organisée par l’EMLyon, la moyenne des notes est égale à 10 et l’écart-type à 4. On modélise par une variable aléatoire X la note d’un candidat choisi au hasard. À l’aide de l’inégalité deBienaymé-Tchebychev, démontrons que P([5 ⩽ X ⩽ 15]) ⩾ 0, 36.
• On a : [5 ⩽ X ⩽ 15] = [−5 ⩽ X − 10 ⩽ 5]= [|X − 10| ⩽ 5]= [X − 10| > 5]
• Ensuite, puisque X (Ω) est borné (X (Ω) ⊂ [0; 20]), la variable aléatoire X admet une variance.Ainsi, d’après l’inégalité de Bienaymé-Tchebychev :

∀a ∈ R+∗, P
([|X − 10| ⩾ a]) ⩽ 42

a2D’où, avec a = 5 :
P
([|X − 10| ⩾ 5]) ⩽ 4252Et : 4252 = (45

)2

= 0, 82= 0, 64Donc :
P
([|X − 10| ⩾ 5]) ⩽ 0, 64Or [|X − 10| > 5] ⊂ [|X − 10| ⩾ 5]. Si |X (ω) − 10| > 5, alors |X (ω) −10| ⩾ 5...Donc si ω ∈ [|X − 10| > 5],alors ω ∈ [|X − 10| ⩾ 5]. D’oùl’inclusion.

Pourquoi ?

Ainsi, par croissance de P :
P
([|X − 10| > 5]) ⩽ P([|X − 10| ⩾ 5])D’où, par transitivité :

P
([|X − 10| > 5]) ⩽ 0, 64
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Par conséquent : 1 −P
([|X − 10| > 5]) ⩾ 0, 64Conclusion : P([5 ⩽ X ⩽ 15]) ⩾ 0, 36.

On suppose maintenant que X ↪→ N (10; 42). À l’aide de la table de la loi N (0; 1), déterminons une valeur approchéede P([5 ⩽ X ⩽ 15]).On a :
P
([5 ⩽ X ⩽ 15]) = P([−54 ⩽

X − 104 ⩽
54
])

X ↪→ N (10; 42), donc X − 104 ↪→ N (0; 1) et X − 104 est à densité= Φ(54
)

− Φ(−54
)

∀x ∈ R, Φ(−x) = 1 − Φ(x)= 2Φ(1, 25) − 1
≃ 0, 7888

On note Φ la fonction de ré-partition d’une VA suivant la loi
N (0; 1).

✎ Notation

Dans ce cas, on est bien au-dessus de la minoration obtenueprécédemment...
Remarque

E2 Soient n ∈ J2; +∞J et X1, X2, ..., Xn des variables aléatoires définies sur (Ω, A,P), indépendantes et suivant
toutes la même loi de Bernoulli de paramètre p ∈]0; 1[. On note Xn = 1

n

n∑
k=1 Xk .

Démontrons : ∀ε > 0, P
([|Xn − p| ⩾ ε]) ⩽ 14nε2 . La variable aléatoire nXn est lasomme de n VA indépendantessuivant la loi B(p), donc nXn ↪→

B(n; p).
☞ Pour info...

Soit ε > 0. La variable aléatoire Xn est une combinaison linéaire de variables aléatoires admettant une variance(car les Xk suit la loi de Bernoulli de paramètre p), donc Xn admet une variance et, d’après l’inégalité de Bienaymé-Tchebychev, licite car ε > 0 :
P
([|Xn − E(Xn)| ⩾ ε]) ⩽ V(Xn)

ε2Or :
• Xn admet une espérance (car admet une variance) et :

E(Xn) = E

(1
n

n∑
k=1 Xk

)
linéarité de l’espérance

= 1
n

n∑
k=1 E(Xk )

∀k ∈ J1; nK, Xk ↪→ B(p)
= 1

n

n∑
k=1 p

= 1
nnp= p

• puis :
V(Xn) = V

(1
n

n∑
k=1 Xk

)

= 1
n2 V

( n∑
k=1 Xk

)
X1, ..., Xn sont indépendantes

= 1
n2

n∑
k=1 V(Xk )

∀k ∈ J1; nK, Xk ↪→ B(p)
= 1

n2
n∑

k=1 p(1 − p)
= 1

n2 np(1 − p)
= p(1 − p)

nOn obtient ainsi :
P
([|Xn − p| ⩾ ε]) ⩽ p(1 − p)

nε2
Pour tout p ∈ [0; 1], p(1−p) ⩽ 14 .À retenir...Enfin, une rapide étude de fonction permet d’établir : ∀x ∈ [0; 1], x(1 − x) ⩽ 14 .D’où :

p(1 − p) ⩽ 14
Conclusion : P([|Xn − p| ⩾ ε]) ⩽ 14nε2 .
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II Loi faible des grands nombres
Avant d’énoncer ce célèbre théorème, commençons par deux résultats immédiats sur la moyenne empirique...Soit (Xk )k∈N∗ une suite de variables aléatoires indépendantes admettant toutes la même espérance notée m et la mêmevariance notée σ 2 . Soit n ∈ N∗ . Notons Xn = 1

n

n∑
k=1 Xk . Justifions que Xn possède une espérance et une variance et

déterminons-les. Xn est la moyenne empirique de
X1, X2, ..., Xn .

Vocabulaire

• La variable aléatoire Xn est une combinaison linéaire de variables aléatoires admettant une espérance, donc Xnadmet une espérance et :
E(Xn) = E

(1
n

n∑
k=1 Xk

)
linéarité de l’espérance

= 1
n

n∑
k=1 E(Xk )

= 1
n

n∑
k=1 m

= 1
nnm= m

• La variable aléatoire Xn est une combinaison linéaire de variables aléatoires admettant une variance, donc Xnadmet une variance et :
V(Xn) = V

(1
n

n∑
k=1 Xk

)

= 1
n2 V

( n∑
k=1 Xk

)
X1, ..., Xn sont indépendantes

= 1
n2

n∑
k=1 V(Xk )

= 1
n2

n∑
k=1 σ 2

= 1
n2 nσ 2

= σ 2
n

On dit que la suite (Xn)n∈N∗converge en probabilité (vocabu-laire HP) vers la variable aléa-toire constante égale à m.
Vocabulaire

Pour tout ε > 0, on a :[|Xn − m| > ε] ⊂ [|Xn − m| ⩾ ε].On a donc également :lim
n→+∞

P
([|Xn − m| > ε]) = 0

Utile ?

Théorème 3 Loi faible des grands nombres
Soit (Xk )k∈N∗ une suite de variables aléatoires sur (Ω, A,P). Pour tout n ∈ N∗ , on note Xn = 1

n

n∑
k=1 Xk .

Si (Xk )k∈N∗ est une suite de variables aléatoires indépendantes, admettant toutes la même espérance m et lamême variance σ2 (c’est le cas si elles ont toutes la même loi) alors :
∀ε > 0, lim

n→+∞
P
([|Xn − m| ⩾ ε]) = 0

⋆ Démonstration : Question classique 38 ⋆

Exemples 3E1 On considère une variable aléatoire X admettant une espérance et une variance. On suppose l’existence d’unefonction Python nommée simule_X permettant de simuler une réalisation de X .A quoi peut-on s’attendre lors de l’exécution du programme suivant ?
1 L=[ s imule_X ( ) f o r k i n range ( 1 0 0 0 0 ) ]
2 p r i n t ( sum ( L ) / l en ( L ) )

Après l’exécution du programme ci-dessus :
• la liste L contiendra 10000 réalisations indépendantes de X ;
• le programme affichera la moyenne des valeurs la liste L.
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Considérons alors une suite (Xk )k∈N∗ de variables aléatoires indépendantes, suivant toutes la même loi que X .Notons, pour tout n ∈ N∗ , Xn = 1
n

n∑
k=1 Xk . L’exécution du programme affichera une réalisation de X10000 .Or, (Xk )k∈N∗ est une suite de variables aléatoires :

✓ indépendantes,
✓ admettant toutes la même espérance égale à E(X ) et la même variance (car toutes ont la même loi que X ).

Un tel niveau de détails n’estpas toujours nécessaire. On peutparfois se contenter de dire quele programme affiche la moyenneempirique de 10000 réalisationsindépendantes de la même VA Xadmettant une espérance et unevariance ; et que, d’après la LfGN,cette moyenne empirique fournitune valeur approchée de E(X ).

✍ Rédaction

Par conséquent, d’après la loi faible des grands nombres :
∀ε > 0, lim

n→+∞
P
([|Xn − E(X )| ⩾ ε]) = 0

Ainsi, pour n suffisamment proche de +∞, toute réalisation de Xn fournit une valeur approchée de E(X ). La moyenne empirique d’un grandnombre de réalisations d’une VAfournit une valeur approchée deson espérance.
À retenir...

Conclusion : l’exécution du programme permet d’obtenir une valeur approchée de E(X ) (sur 10000 réalisationsindépendantes de X ).
E2 Dans le même contexte, à quoi peut-on s’attendre lors de l’exécution du programme suivant ?

1 c=0
2 f o r k i n range ( 1 0 0 0 0 ) :
3 i f s imule_X ( ) >0 :
4 c=c+1
5 p r i n t ( c / 1 0000 )

Le programme ci-dessus simulera 10000 réalisations indépendantes de X et comptera, à l’aide du compteur c, lenombre de fois où, sur ces 10000 réalisations, on obtient une réalisation strictement positive. Le programme afficheraensuite le rapport c10000 correspondant donc à la fréquence d’apparition de l’évènement [X > 0] sur les 10000répétitions indépendantes.Considérons une suite (Xk )k∈N∗ de variables aléatoires indépendantes suivant toutes la loi de Bernoulli de paramètre
P
([X > 0]). Notons, pour tout n ∈ N∗ , Xn = 1

n

n∑
k=1 Xk .

(Xk )k∈N∗ est une suite de variables aléatoires :
✓ indépendantes,
✓ admettant toutes la même espérance égale à P([X > 0]), notée p (espérance commune aux Xk qui suiventune loi de Bernoulli de paramètre P([X > 0])) et la même variance (car toutes ont la même loi).Par conséquent, d’après la loi faible des grands nombres :

∀ε > 0, lim
n→+∞

P
([|Xn − p| ⩾ ε]) = 0

Ainsi, pour n suffisamment proche de +∞, toute réalisation de Xn fournit une valeur approchée de p.
Conclusion : l’exécution du programme permet d’obtenir une valeur approchée de P([X > 0]) (sur 10000réalisations indépendantes de X ).

De surcroit, n∑
k=1 Xk prend comme valeurs le nombre de réalisations de l’évènement [X > 0] sur n réalisations in-

dépendantes de X . Par conséquent, Xn est le fréquence d’apparition de l’évènement [X > 0] sur n réalisationsindépendantes de X .On vient donc d’établir que la fréquence d’apparitions de [X > 0] sur un grand nombre de réalisations indépen-dantes de X fournit une valeur approchée de P([X > 0]).

La fréquence d’apparition d’unévènement sur un grand nombrede répétitions est une valeurapprochée de la probabilité de cetévènement.

À retenir...

III Convergence en loi
III.1 Définition et premiers exemples

Définition 1 Convergence en loi
Soient X une variable aléatoire sur (Ω, A,P) et (Xn)n∈N∗ une suite de variables aléatoires sur (Ω, A,P). On note
FX la fonction de répartition de X et, pour tout n ∈ N∗ , on note FXn la fonction de répartition de Xn .On dit que la suite (Xn)n∈N∗ converge en loi vers X lorsque, pour tout x où FX est continue, on a :

lim
n→+∞

FXn (x) = FX (x)

On note Xn
L−→

n→+∞
X .Attention :(((((hhhhhXn(ω) → X (ω). Il n’ya d’ailleurs pas unicité de X :toute variable aléatoire ayantla même loi que X convient. Enrevanche, il y a unicité de lafonction limite de (FXn )n∈N∗ . Etcomme la fonction de répartitioncaractérise la loi, c’est parfait : ily a unicité de la loi limite.

✎ Notation

On examine, à x fixé, la limitede FXn (x) quand n → +∞ (onparle de convergence simple dela suite de fonctions (FXn )n∈N∗ :vocabulaire HP).

Important !
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♣ Méthode 1 ♣ Pour établir que Xn
L−→

n→+∞
X :

• On commence par rappeler (ou déterminer) la fonction de répartition de X et celles de Xn , pour tout n ∈ N∗ .
• On fixe x dans R sauf en les points de discontinuité de FX (si X est à densité, FX est continue, donc x seradans R entier).
• On examine alors lim

n→+∞
FXn (x), en observant bien les disjonctions de cas sur FX (x)...

Il se peut que l’énoncé soit for-mulé ainsi "Montrer que (Xn)n∈N∗converge en loi vers une variablealéatoire X dont on précisera laloi." ; la méthode ne change alorspas beaucoup...

♣ Méthode !

Exemples 4
E1 Pour tout n ∈ N∗ , on considère une variable aléatoire Xn suivant la loi exponentielle de paramètre 1 + 1

n .Montrons que (Xn)n∈N∗ converge en loi vers une variable aléatoire X suivant la loi exponentielle de paramètre 1.Notons, pour tout n ∈ N∗ , Fn la fonction de répartition de Xn et F celle d’une variable aléatoire X suivant la loiexponentielle de paramètre 1.On a, pour tout n ∈ N∗ :
∀x ∈ R, Fn(x) = { 0 si x < 01 − e−(1+ 1

n )x si x ⩾ 0ainsi que :
∀x ∈ R, F (x) = { 0 si x < 01 − e−x si x ⩾ 0

La fonction F est continue sur R, soit donc x ∈ R. F est continue sur R, on doitdonc établir lim
n→+∞

Fn(x) = F (x)pour tout x ∈ R.
✘ Attention !

• Si x < 0 :On a, pour tout n ∈ N∗ , Fn(x) = 0, d’où : lim
n→+∞

Fn(x) = 0
• Si x ⩾ 0 :On a, pour tout n ∈ N∗ , Fn(x) = 1 − e−(1+ 1

n )x .Or lim
n→+∞

(1 + 1
n

) = 1, donc : lim
n→+∞

−
(1 + 1

n

)
x = −x . D’où, par composition et opération :

lim
n→+∞

1 − e−(1+ 1
n )x = 1 − e−x

On a donc établi :
∀x ∈ R, lim

n→+∞
Fn(x) = F (x)

Conclusion : la suite (Xn)n∈N∗ converge en loi vers une variable aléatoire X suivant la loi exponentielle deparamètre 1. Pour visualiser la convergence dela suite des fonctions de réparti-tions : ici.
Remarque

E2 Pour tout n ∈ N∗ , on considère une variable aléatoire Xn suivant la loi uniforme sur [−1
n ; 1

n

]. Montrons que(Xn)n∈N∗ converge en loi vers une variable aléatoire X suivant la loi certaine égale à 0.Notons, pour tout n ∈ N∗ , Fn la fonction de répartition de Xn et F celle d’une variable aléatoire X suivant la loicertaine égale à 0.On a, pour tout n ∈ N∗ :
∀x ∈ R, Fn(x) =


0 si x < −1

n
nx + 12 si x ∈

[
− 1

n ; 1
n

]
1 si x > −1

n

Fonction de répartition d’une VAsuivant la loi U
([a; b]) :

F : x 7−→


0 si x < a
x − a
b − a si x ∈ [a; b]1 si x > b

☞ Rappel...

ainsi que :
∀x ∈ R, F (x) = { 0 si x < 01 si x ⩾ 0

La fonction F est continue sur R, sauf en 0, soit donc x ∈ R∗ . F n’est pas continue en 0, on exa-mine donc lim
n→+∞

Fn(x) seulementpour x ∈ R∗ .
✘ Attention !

• Si x < 0 :Puisque x < 0 et que lim
n→+∞

−1
n = 0, pour n suffisamment proche de +∞, on a x < −1

n .Dans ce cas, pour n suffisamment proche de +∞, on a Fn(x) = 0. Et ainsi :
lim

n→+∞
Fn(x) = 0

• Si x > 0 :Puisque x > 0 et que lim
n→+∞

1
n = 0, pour n suffisamment proche de +∞, on a x > 1

n .Dans ce cas, pour n suffisamment proche de +∞, on a Fn(x) = 1. Et ainsi :
lim

n→+∞
Fn(x) = 1
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On a donc établi :
∀x ∈ R∗, lim

n→+∞
Fn(x) = F (x)

Conclusion : la suite (Xn)n∈N∗ converge en loi vers une variable aléatoire X suivant la loi certaine égale à 0. Pour visualiser la convergence dela suite des fonctions de réparti-tions : ici.
Remarque

E3 Pour tout n ∈ N∗ , on considère une variable aléatoire Xn telle que P([Xn = 0]) = 1− 1
n et P([Xn = n]) = 1

n .Montrons que (Xn)n∈N∗ converge en loi vers une variable aléatoire X dont on précisera la loi.Notons, pour tout n ∈ N∗ , Fn la fonction de répartition de Xn .On a, pour tout n ∈ N∗ :
∀x ∈ R, Fn(x) =


0 si x < 01 − 1

n si x ∈ [0; n[1 si x ⩾ n

Pour s’aider dans la disjonctionde cas, on peut, dans sa tête,"faire tendre n → +∞ dansles différents intervalles" desexpressions de Fn ... On voit alors,qu’ici, le troisième cas n’existeraplus lorsque n → +∞.

♥ Astuce du chef ♥

Soit x ∈ R.
• Si x < 0 :On a, pour tout n ∈ N∗ , Fn(x) = 0, d’où : lim

n→+∞
Fn(x) = 0

• Si x ⩾ 0 :Puisque x ⩾ 0 et que lim
n→+∞

n = ∞, pour n suffisamment proche de +∞, on a x < n.
Dans ce cas, pour n suffisamment proche de +∞, on a Fn(x) = 1 − 1

n . Et ainsi :
lim

n→+∞
Fn(x) = 1

On a donc établi :
∀x ∈ R, lim

n→+∞
Fn(x) = F (x)

où F : x 7−→
{ 0 si x < 01 si x ⩾ 0 . Or F est la fonction de répartition d’une variable aléatoire suivant la loi certaineégale à 0...

Conclusion : la suite (Xn)n∈N∗ converge en loi vers une variable aléatoire X suivant la loi certaine égale à 0. Pour visualiser la convergence dela suite des fonctions de réparti-tions : ici.
Remarque

E4 Pour tout n ∈ N∗ , on considère une variable aléatoire Xn suivant la loi exponentielle de paramètre 1
n . Montronsque (Xn)n∈N∗ ne converge pas en loi.Notons, pour tout n ∈ N∗ , Fn la fonction de répartition de Xn .On a, pour tout n ∈ N∗ :

∀x ∈ R, Fn(x) = { 0 si x < 01 − e− x
n si x ⩾ 0Soit x ∈ R. Lorsqu’on ne sait pas s’il y aconvergence ou que l’on neconnaît pas la loi limite, on quan-tifie x dans R, puis on avise en-suite si besoin...

Remarque

• Si x < 0 :On a pour tout n ∈ N∗ , Fn(x) = 0, d’où : lim
n→+∞

Fn(x) = 0
• Si x ⩾ 0 :On a pour tout n ∈ N∗ , Fn(x) = 1 − e− x

n . Or lim
n→+∞

−x
n = 0. Donc, par composition et opérations :

lim
n→+∞

Fn(x) = 0
On a donc établi :

∀x ∈ R, lim
n→+∞

Fn(x) = 0
Or la fonction constante égale à 0 n’est pas une fonction de répartition.
Conclusion : la suite (Xn)n∈N∗ ne converge pas en loi.
E5 Question classique 40.E6 Question classique 41.

Les exemples ci-dessus mettent enévidence qu’il n’y a pas toujoursconvergence en loi ; et que, siconvergence, les cas "discret" →"discret", "à densité" → "à densité"et "à densité" → "discret" peuventse produire. Le cas "discret" → "àdensité" est également possible...

Remarque

Toutes les variables aléatoiresen jeu doivent être discrètes (lerésultat est en fait valable si lesvariables aléatoires sont discrètes,non nécessairement à valeursdans N) !

Important !
Théorème 4 Cas "discret" → "discret" dans N.
Soient X une variable aléatoire sur (Ω, A,P) et (Xn)n∈N∗ une suite de variables aléatoires sur (Ω, A,P).
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Si X (Ω) ⊂ N et, pour tout n ∈ N∗, Xn(Ω) ⊂ N, alors :(
Xn

L−→
n→+∞

X
)

⇐⇒
(

∀k ∈ X (Ω), lim
n→+∞

P
([Xn = k ]) = P([X = k ]))

⋆ Démonstration : Supposons que X ainsi que X1, X2, ... sont à valeurs dans N. Raisonnons ensuite par double-implication.
⇒ Supposons (Xn

L−→
n→+∞

X
). Soit k ∈ N.Puisque X et X1, X2, ... sont à valeurs entières et que k ∈ N, on a :
P
([X = k ]) = P([X ⩽ k ])−P

([X ⩽ k − 1])= FX (k ) − FX (k − 1)et :
P
([Xn = k ]) = P([Xn ⩽ k ])−P

([Xn ⩽ k − 1])= FXn (k ) − FXn (k − 1)

On part de :[X ⩽ k ] = [X = k ] ∪ [X < k ]Ensuite, puisque X est à valeursentières et que k ∈ N, on a[X < k ] = [X ⩽ k − 1]... Eton mentionne l’incompatibilité de[X = k ] et [X ⩽ k − 1]...

Important !

On a envie de passer à la limite quand n → +∞, mais on ne peut pas ! En effet, puisque X (Ω) ⊂ N, lafonction de répartition de X n’est a priori pas continue en k et k − 1... Contournons le problème en remarquantque, puisque X1, X2, ... sont à valeurs entières, on a :
∀n ∈ N∗, P

([Xn ⩽ k ]) = P([Xn ⩽ k + 12
]) ; P

([Xn ⩽ k − 1]) = P([Xn ⩽ k − 1 + 12
])

Ainsi, pour tout n ∈ N∗ :
P
([Xn = k ]) = P([Xn ⩽ k + 12

])
−P

([
Xn ⩽ k − 12

])
= FXn

(
k + 12

)
− FXn

(
k + −12

)
Or k + 12 et k − 12 n’appartiennent pas à X (Ω), donc FX est continue en k + 12 et k − 12 . Ainsi, puisque (Xn)n∈N∗converge en loi vers X , on a :

lim
n→+∞

FXn

(
k + 12

) = FX

(
k + 12

) ; lim
n→+∞

FXn

(
k − 12

) = FX

(
k − 12

)
D’où :

lim
n→+∞

P
([Xn = k ]) = FX

(
k + 12

)
− FX

(
k − 12

)
= P([X ⩽ k + 12

])
−P

([
X ⩽ k − 12

])
X est à valeurs entières= P([X ⩽ k ])−P

([X ⩽ k − 1])= P([X = k ])
Conclusion : (Xn

L−→
n→+∞

X
) =⇒

(
∀k ∈ N, lim

n→+∞
P
([Xn = k ]) = P([X = k ])).

⇐ Supposons "∀k ∈ N, lim
n→+∞

P
([Xn = k ]) = P([X = k ])". Montrons que (Xn)n∈N∗ converge en loi vers X .Soit x ∈ R tel que FX est continue en x . On a, pour tout n ∈ N∗ :

FXn (x) = P([Xn ⩽ x ])
Xn est à valeurs entières= P([Xn ⩽ ⌊x⌋]) puisque Xn(Ω) ⊂ N, on a [Xn ⩽ ⌊x⌋] = ⌊x⌋⋃

k=0[Xn = k ] ; puis par incompatibilité
des évènements de la famille ([Xn = k ])k∈J0;⌊x⌋K

= ⌊x⌋∑
k=0 P

([Xn = k ])
Or : ∀k ∈ N, lim

n→+∞
P
([Xn = k ]) = P([X = k ]). D’où, par somme :

lim
n→+∞

FXn (x) = ⌊x⌋∑
k=0 P

([X = k ]) arguments similaires à ce qui précède= P([X ⩽ ⌊x⌋])
X est à valeurs entières= P([X ⩽ x ])= FX (x)D’où la convergence en loi de (Xn)n∈N∗ vers X .

En fait, nous avons établilim
n→+∞

FXn (x) = FX (x) pour tousles réels x ... même ceux en les-quels FX n’est pas continue.

⋆Subtil...⋆

⋆

Exemple 5Question classique 39.
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III.2 Théorème central limite
Dans sa toute première version,les variables aléatoires X1, X2, ...suivaient une loi de Bernoulli deparamètre p. Sous cette condition,on parle alors de théorème deMoivre-Laplace.Abraham de Moivre (1667-1754,français) l’a démontré en 1733dans le cas où p = 12 , puisLaplace dans le cas général audébut du XIXème siècle.

Un peu d’histoire

Quand on centre et qu’on ré-duit la moyenne empirique d’unesuite de VA iid de variance nonnulle, la VA obtenue convergeen loi vers une VA suivant la loi
N (0; 1).

Autrement dit :

Théorème 5 Théorème central limite
Soit (Xk )k∈N∗ une suite de variables aléatoires indépendantes, de même loi, d’espérance m et de variance σ2non nulle.On pose, pour tout n ∈ N∗ :

Xn = 1
n

n∑
k=1 Xk ; Xn

∗ = Xn − E(Xn)
σ (Xn) = √

nXn − m
σ

Dans ce cas, la suite (Xn
∗)

n∈N∗ converge en loi vers une variable aléatoire suivant la loi N (0; 1).Autrement dit :
∀x ∈ R, lim

n→+∞
P
([Xn

∗
⩽ x ]) = ∫ x

−∞

1√2π
e− t22 dt

Ou encore :
∀(a, b) ∈ R2,

(
a < b =⇒ lim

n→+∞
P
([a ⩽ Xn

∗
⩽ b]) = ∫ b

a

1√2π
e− t22 dt

)
Lorsque n est suffisamment grand, on pourra considérer que : P([a ⩽ Xn

∗
⩽ b]) ≃ P

([a ⩽ Z ⩽ b]) où
Z ↪→ N (0; 1).

⋆ Démonstration : Il en existe différentes démonstrations, dont une très courte, mais hors de portée avec nos outils.D’autres plus longues... On en trouvera une dans la dernière partie du sujet ESSEC II E 2022. ⋆

IV Approximations de variables aléatoires
Théorème 6 Approximation d’une loi binomiale par une loi de Poisson
Soient λ ∈ R+∗ et (Xn)n∈N∗ une suite de variables aléatoires sur (Ω, A,P).Si : ∀n ∈ N∗, Xn ↪→ B

(
n, λ

n

), alors : la suite (Xn)n∈N∗ converge en loi vers une variable aléatoire suivant laloi de Poisson de paramètre λ.
⋆ Démonstration : Cas particulier de Question classique 39. ⋆

Lorsque 0 < np < 10 (c’est à direque si n est grand, p doit êtrepetit) on approche la loi B(n; p)par la loi P(np).On voit parfois les conditions :
n ⩾ 30 et p ⩽ 0, 1.

En pratique...

Les deux théorèmes qui suiventne sont pas explicitement au pro-gramme... Il est donc d’autant plusimportant de savoir les redémon-trer.

Important !Théorème 7 Approximation d’une loi binomiale par une loi normale (HP ?)
Soient p ∈]0; 1[ et (Xn)n∈N∗ une suite de variables aléatoires telles que : ∀n ∈ N∗, Xn ↪→ B(n; p).On pose, pour tout n ∈ N∗ , X ∗

n = Xn − np√
np(1 − p) .Dans ce cas, la suite (X ∗

n )n∈N∗ converge en loi vers une variable aléatoire suivant la loi N (0; 1).
⋆ Démonstration : Considérons (Yk )k∈N∗ une suite de variables aléatoires indépendantes suivant toutes la loi deBernoulli de paramètre p, de sorte que pour tout n ∈ N∗ , Xn = n∑

k=1 Yk .
On pose, pour tout n ∈ N∗ :

Yn = 1
n

n∑
k=1 Yk ; Yn

∗ = Yn − E(Yn)
σ (Yn)

• On a, pour tout n ∈ N∗ :
Yn

∗ = Yn − E(Yn)
σ (Yn) Y1, ..., Yn sont indépendantes, de loi B(p), d’espérance p et d’écart-type √p(1 − p)

= √
n Yn − p√

p(1 − p) Yn = 1
n Xn= √

n
1
n Xn − p√
p(1 − p)

= √
n

n
Xn − np√
p(1 − p)

= Xn − np√
np(1 − p)
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• Puisque la suite (Yk )k∈N∗ est une suite de variables aléatoires indépendantes, de même loi, ayant une variancenon nulle, d’après le théorème central limite :
Yn

∗ L−→
n→+∞

Z

où Z ↪→ N (0; 1).Conclusion : Xn − np√
np(1 − p) L−→

n→+∞
Z , où Z ↪→ N (0; 1).

⋆

Conséquence : si, pour tout n ∈ N∗ , Xn ↪→ B(n; p), alors on peut considérer que pour n suffisamment grand, Xn suitapproximativement la loi N (np; np(1 − p)).
Lorsque n ⩾ 30, np ⩾ 5 et
n(1 − p) ⩾ 5 (c’est à dire que si nest grand, p doit être ni trop petitni trop grand) on approche la loi
B(n; p) par la loi N (np; np(1 −
p)).On voit parfois les conditions :
n ⩾ 30 et p ⩽ 0, 1.Notons que l’approximation sefait à espérance et varianceconstantes.

En pratique...

En effet :avec les notations du théorème 7, la suite (X ∗
n )n∈N∗ converge en loi vers une variable aléatoire Z suivant la loi

N (0; 1).On peut donc considérer que pour n grand, la variable aléatoire Xn se comporte comme la variable aléatoire√
np(1 − p)Z + np.Or Z ↪→ N (0; 1), donc √np(1 − p)Z + np ↪→ N (np; np(1 − p)). D’où le résultat. Soient a, b ∈ R avec a ̸= 0.Si X ↪→ N (µ; σ 2), alors(aX + b) ↪→ N (aµ + b; a2σ 2)

☞ Rappel...

Exemple 6
On effectue 10000 lancers, supposés indépendants, d’une même pièce donnant PILE avec la probabilité 12 . On note Xla variable aléatoire égale au nombre de PILE obtenus. Déterminons une valeur approchée de P([X ∈ [4900; 5100]])et de P([X = 5000]).

• ✱ L’expérience consiste en 10000 répétitions indépendantes de la même épreuve de Bernoulli dont lesuccès "obtenir PILE" est de probabilité 12 .

✱ La variable aléatoire X compte le nombre de succès sur ces 10000 répétitions.Par conséquent, X suit la loi binomiale de paramètre 10000 et 12 .
• On a :

P
([X ∈ [4900; 5100]]) = P( −100√2500 ≤

[
X − 5000√2500 ⩽

100√2500
])

= P([−2 ⩽
X − 5000√2500 ⩽ 2]) théorème 7

≃ P
([−2 ⩽ Z ⩽ 2])

où Z ↪→ N (0; 1). En notant Φ la fonction de répartition de Z , on a, puisque Z est à densité :
P
([−2 ⩽ Z ⩽ 2]) = Φ(2) − Φ(−2)

∀x ∈ R, Φ(−x) = 1 − Φ(x)= 2Φ(2) − 1
≃ 0, 9544

Conclusion : P([X ∈ [4900; 5100]]) ≃ 0, 9544.

En fait, l’approximation peut êtrerendue meilleure en raisonnantplus finement...En effet, puisque X est à valeursdans N, on a : ∀k ∈ N, P
([X =

k ]) = P([k −0, 5 ⩽ X ⩽ k+0, 5]).Ainsi : P([4900 ⩽ X ⩽ 5100]) =
P
([4899, 5 ⩽ X ⩽ 5100, 5]).Et l’approximation est meilleureen utilisant P([4899, 5 ⩽ X ⩽5100, 5]). C’est ce que l’on appellela correction de continuité.

☞ Pour info...

• Puisque X est à valeurs entières, on a :
P
([X = 5000]) = P([X ∈ [4999, 5; 5000, 5]])

= P([−0, 01 ⩽
X − 5000√2500 ⩽ 0, 01]) théorème 7

≃ P
([−0, 01 ⩽ Z ⩽ 0, 01])

où Z ↪→ N (0; 1). En notant Φ la fonction de répartition de Z , on a, puisque Z est à densité :
P
([−0, 01 ⩽ Z ⩽ 0, 01]) = Φ(0, 01) − Φ(−0, 01)

∀x ∈ R, Φ(−x) = 1 − Φ(x)= 2Φ(0, 01) − 1
≃ 0, 008

Conclusion : P([X = 5000) ≃ 0, 008.
Théorème 8 Approximation d’une loi de Poisson par une loi normale (HP ?)
Soient α > 0 et (Xn)n∈N∗ une suite de variables aléatoires telles que : ∀n ∈ N∗, Xn ↪→ P(nα).On pose, pour tout n ∈ N∗ , X ∗

n = Xn − nα√
nα .Dans ce cas, la suite (X ∗

n )n∈N∗ converge en loi vers une variable aléatoire suivant la loi N (0; 1).
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⋆ Démonstration : Considérons (Yk )k∈N∗ une suite de variables aléatoires indépendantes suivant toutes la loi dePoisson de paramètre α , de sorte que pour tout n ∈ N∗ , Xn = n∑
k=1 Yk .

On pose, pour tout n ∈ N∗ :
Yn = 1

n

n∑
k=1 Yk ; Yn

∗ = Yn − E(Yn)
σ (Yn)

• On a, pour tout n ∈ N∗ :
Yn

∗ = Yn − E(Yn)
σ (Yn) Y1, ..., Yn sont indépendantes, de loi P(α), d’espérance α et d’écart-type √

α

= √
nYn − α√

α Yn = 1
n Xn= √

n
1
n Xn − α√

α

= √
n

n
Xn − nα√

α

= Xn − nα√
nα

• Puisque la suite (Yk )k∈N∗ est une suite de variables aléatoires indépendantes, de même loi, ayant une variancenon nulle, d’après le théorème central limite :
Yn

∗ L−→
n→+∞

Z

où Z ↪→ N (0; 1).
Conclusion : Xn − nα√

nα
L−→

n→+∞
Z , où Z ↪→ N (0; 1).

⋆

Conséquence : si, pour tout n ∈ N∗ , Xn ↪→ P(nα), alors on peut considérer que pour n suffisamment grand, Xn suitapproximativement la loi N (nα ; nα). Lorsque λ ⩾ 15 on approche laloi P(λ) par la loi N (λ, λ).Là encore, l’approximation sefait à espérance et varianceconstantes.

En pratique...En effet :avec les notations du théorème 8, la suite (X ∗
n )n∈N∗ converge en loi vers une variable aléatoire Z suivant la loi

N (0; 1).On peut donc considérer que pour n grand, la variable aléatoire Xn se comporte comme la variable aléatoire√
nαZ + nα .Or Z ↪→ N (0; 1), donc √

nαZ + nα ↪→ N (nα ; nα). D’où le résultat. Soient a, b ∈ R avec a ̸= 0.Si X ↪→ N (µ; σ 2), alors(aX + b) ↪→ N (aµ + b; a2σ 2)
☞ Rappel...

Chapitre 14 - Page 12/12


	
	Inégalités de Markov et Bienaymé-Tchebychev
	Loi faible des grands nombres
	Convergence en loi
	Définition et premiers exemples
	Théorème central limite

	Approximations de variables aléatoires


