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PROBABILITES

CONVERGENCE DE SUITES DE VARIABLES ALEATOIRES

INTRODUCTION...

Ce chapitre met l'accent sur deux théoremes fondamentaux en théorie des probabilités et en statistiques : la lot faible des grands nombres et le
théoreme central limite.

La lot faible des grands nombres est due a Pafnouti Tchebychev (1821-1894, russe) qui la démontra en utilisant une inégalité énoncée par Irénée-Jules
Bienaymé (1796-1878, francais) et démontrée par Tchebychev lui-méme.

Quant au théoreme central limite : des cas particuliers ont d'abord été démontrés par Abraham de Moivre (1667-1754, francais) et Laplace, mais
concernant la version générale, qui l'a démontrée en premier? En 1920, il semble que Alexandre Liapounov (1857-1918, russe) et Jarl Waldemar
Lindeberg (1876-1932, finlandais) en aient tous deux fournt une démonstration différente. En 1922, Paul Lévy (1886-1971, frangais) démontre le
théoreme qui porte son nom, dont le TCL est une conséquence immédiate, et permet ainsi a Lindeberg d'en donner une version avec des hypothéses
amoindries! Comme bien souvent, ce théoréme est le fruit de collaborations plus ou moins volontaires entre des mathématiciens d'époques et de
nationalités variées.

Il est important de noter que ['Histoire se rapproche! Nous sommes a présent au début du XX®™ siécle, qui demeurera sans aucun doute le siécle de
l'essor des probabilités comme branche légitime des mathématiques.
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Remarque

Sauf précision, les variables
aléatoires étudiées seront quel-
conques (discrétes, a densité ou ni
discréte ni a densité).

Dans tout le chapitre, (Q, A, IP) désigne un espace probabilisé et X une variable aléatoire définie sur cet espace.

| INEGALITES DE MARKOV ET BIENAYME-TCHEBYCHEV
— Remarque

L . ) i Selon le programme, la connais-
THEOREME 1 INEGALITE DE MARKOV sance de l'inégalité de Mar-

kov n'est pas exigible, mais elle
semble parfois nécessaire a l'oral
d'HEC.. Il faut, dans tous les cas,

St X est a valeurs positives et admet une espérance, alors :

E( ) en connaitre des démonstrations.

va e R, P(IX > d]) < ——

a — Interprétation
4 e Si a < EX), linégalité n'ap-

porte rien, car alors v > 1.

*

rDE’MONSTRATION : Soit a € R™. o Le résultat est donc intéressant

R . . st @ est grand par rapport a E(X).

e Si X est discrete. Dans cegcas, l'inégalité affirme

qu'il est peu probable que X

aIP([X > g]) —=q Z IP([X = X]) prenne des valeurs trop grandes
par rapport a E(X).

o Cette inégalité a l'avantage

d'étre valable pour toutes les

) Vx > a, u]P([X = x]) < X]P([X = X]) (car une probabilité est positive) ‘;’32;2[;2 ?ale(el?etoérsistr%()ssgtlé\;ee‘srlale.

Inconvénient : la majoration de

P([X > a]) nest souvent pas trés

IN II
™ 2™
> Q
=
= =
II II
ERCS

) X est a valeurs positives fine.

n
]
>
=
>
I
=

—E(X)

Dot le résultat, puisque a > 0.

e Si X est a densité.
En notant f une densité de X :

aP(X 2 a]) =a /M f(x)dx

+00
= af(x)dx
a Vx > a, af(x) < xf(x) (car f positive) et par croissance de
oo lintégrale
< xf(x)dx
a ) a >0 et pour tout x € R*, xf(x) >0
+00
< / xf(x)dx
0
—_—
—E(X), car X(Q) € R+

D'ous le résultat, puisque a > 0.

e Dans le cas oli X est quelconque : Question classique 37.

| EXEMPLE 1 I

On a méme la résultat suivant :

Soient r € N* et X une variable aléatoire sur (2, A, IP) admettant un moment d'ordre r. Démontrons : si f est une fonction strictement
- croissante et positive sur un in-
E(|X| ) tervalle /, st X est une variable

Va e R™, P([|X] 2 a]) < ——

a’ aléatoire a valeurs dans /, alors
pour tout b € [ tel que f(b) > 0,

E(f(X
ona:P(X>=b]) < (f((b)))

CHAPITRE 14 - Page 2/12


https://jeremylegendre.fr/wp-content/uploads/Questions-classiques.pdf

En conséquence de l'inégalité de Markov :

= Rappel...
THEOREME 2 INEGALITE DE BIENAYME-TCHEBYCHEV X admet une variance si, et
seulement si, X admet un mo-
ment d'ordre 2.

St X admet une variance, alors :

V(X) — = Pour info...

L'inégalité de BT est un cas d'in-

égalité de concentration.

Elle permet d'estimer la proba-

F bilité qu'une variable aléatoire
DEMONSTRATION : s'écarte de sa moyenne.

Tout comme l'inégalité de Markoy,

elle est générale mais la majora-

tion fournie n'est pas tres fine...

On peut déja remarquer que si

lon prend a < o(X), Uinégalité

de BT est inutile !

o

Va € R™, P([|[X —E(X)| > d]) <

)
| EXEMPLES 2 I

Lors de l'épreuve de mathématiques organisée par 'EMLyon, la moyenne des notes est égale a 10 et l'écart-
type & 4. On modélise par une variable aléatoire X la note d'un candidat choisi au hasard. A l'aide de l'inégalité de
Bienaymé-Tchebychev, démontrons que P([5 < X < 15]) > 0, 36.
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On suppose maintenant que X < .47(10; 4%). A l'aide de la table de la loi .#(0; 1), déterminons une valeur approchée
de P([5 < X < 19)).

Soient n € [2; +oo] et Xy, X5, ..., X, des variables aléatoires définies sur (Q, A, IP), indépendantes et suivant

o ,] n
toutes la méme loi de Bernoulli de paramétre p €]0;1[. On note X, = - ZXk.
k=1

Démontrons : Ve > 0, P([[X, —p| > €]) < :
émontrons : Ve > (H pl 5]) Anel
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Il Lol FAIBLE DES GRANDS NOMBRES

Avant d'énoncer ce célebre théoréme, commencons par deux résultats immédiats sur la moyenne empirique...

Soit (Xk)ren+ une suite de variables aléatoires indépendantes admettant toutes la méme espérance notée m et la méme
n

variance notée ¢”. Soit n € N*. Notons X, = — ZXk. Justifions que X, posséde une espérance et une variance et )
M3 Vocabulaire
déterminons-Les. X, est la moyenne empirique de
X1, Xos o X
THEOREME 3 Lol FAIBLE DES GRANDS NOMBRES
,I n
Soit (Xi)ken+ une suite de variables aléatoires sur (Q, A, IP). Pour tout n € N*, on note X, = — ZXkA
n k=1 Vocabulaire
St (Xk)kenr est urzle suite de variables aléatoires indépendantes, admettant toutes la méme espérance m et la On dit que la suite (Xy)pen-
méme variance o (c'est le cas si elles ont toutes la méme loi) alors : converge en probabilité (vocabu-
laire HP) vers la variable aléa-
Ve > 0’ lim IP(”Xn _ m‘ 2 8]) =0 4 toire constante égale a m.
n—-+00
Utile ?

Pour tout € >0, on a:
* , . . Xy —m| > e]C[|X, —m| > €]
DEMONSTRATION : Question classique 38 [c‘)nna dor‘m ége]alerr[]er:t: >
tim P([[X, — m| > ¢€]) =0
oo

EXEMPLES 3

H

On considére une variable aléatoire X admettant une espérance et une variance. On suppose lexistence d'une
fonction Python nommée simule_X permettant de simuler une réalisation de X.
A quoi peut-on s'attendre lors de l'exécution du programme suivant?

L=[simule_X () for k in range(10000)]
print (sum(L)/len(L))

N
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Dans le méme contexte, a quoi peut-on s'attendre lors de l'exécution du programme suivant?

1||c=0

for k in range(10000):
3 if simule_X{()>0:

4 c=c+1
print(c/10000)

)

o

[l CONVERGENCE EN LOI

[l.1 DEFINITION ET PREMIERS EXEMPLES

DEFINITION 1 CONVERGENCE EN LOI

Soient X une variable aléatoire sur (QQ, A, P) et (X,),en+ une suite de variables aléatoires sur (Q), A, P). On note
Fx la fonction de répartition de X et, pour tout n € N*, on note Fx, la fonction de répartition de X,,.
On dit que la suite (X,),en+ converge en loi vers X lorsque, pour tout x ol Fx est continue, on a :

lim Fx, (x) = Fx(x)

n—+o0

V'S
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<z
On note X, — X.
n—-+0a

Attention : Xgtmp—=X{@]. Il n'y

a d'ailleurs pas unicité de X :
toute variable aléatoire ayant

la méme lot que X convient. En
revanche, il y a unicité de la
fonction limite de (Fx,)oen. Et
comme la fonction de répartition
caractérise la loi, c'est parfait : il
y a unicité de la loi limite.

— % Notation ———

— Important !

On examine, a x fixé, la limite
de Fyx,(x) quand n — —+o0 (on
parle de convergence simple de
la suite de fonctions (Fx,)hen :

vocabulaire HP).




, el &z
& MetHopE 1 % Pour établir que X, — X : & Méthode !
n—+o0
. . . , . Il se peut que 'énoncé soit for-
e On commence par rappeler (ou déterminer) la fonction de répartition de X et celles de X, pour tout n € N*. mulé ainst "Montrer que (X,)ren

X . . Ly . N s . ( converge en loi vers une variable
e On fixe x dans R sauf en les points de discontinuité de Fx (si X est a densité, Fx est continue, donc x sera aléatoire X dont on précisera la

dans R entier). loi."; la méthode ne change alors

. . . . . as beaucoup...
e On examine alors lim Fx, (x), en observant bien les disjonctions de cas sur Fx(x)... P P

n—-+00
EXemPLES 4

1
Pour tout n € N*, on considére une variable aléatoire X, suivant la loi exponentielle de parametre 1+ —.
n

Montrons que (X;,),en+ converge en loi vers une variable aléatoire X suivant la lot exponentielle de paramétre 1.

-1 1
Pour tout n € N*, on considére une variable aléatoire X, suivant la lot uniforme sur [—; f]A Montrons que
n'n

(Xh)nen= converge en loi vers une variable aléatoire X suivant la lot certaine égale a 0.
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1 1
Pour tout n € N*, on considére une variable aléatoire X, telle que P([X, = 0]) = 1— - et P([X, = n]) = -
Montrons que (X,),en+ converge en lot vers une variable aléatoire X dont on précisera la loi.

1

Pour tout n € N*, on considére une variable aléatoire X, suivant la loi exponentielle de parametre —. Montrons
n

que (X,)nen+ Ne converge pas en loi.

— Remarque

Les exemples ci-dessus mettent en
évidence qu'il n'y a pas toujours
convergence en loi; et que, si
convergence, les cas 'discret’ —

Question classique 40. ‘discret’, "a densité’ — "a densité’
et 'a densité" — 'discret’ peuvent
Question classique 41. se produire. Le cas ‘discret’ — "a

4 densité" est également possible..

THEOREME 4 CAs "DISCRET" — "DISCRET" DANS N.

Important !

Soient X une variable aléatoire sur (Q, A, P) et (X,),en+ Une suite de variables aléatoires sur (Q, A, IP). Toutes les variables aléatoires
en jeu doivent étre discretes (le

résultat est en fait valable si les
variables aléatoires sont discretes,
non nécessairement a valeurs
dans N) !
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St X(Q) € N et, pour tout n € N*, X,(Q) C N, alors :

(X% 5 X) = (vke X,

n—+o00

lim P([X, = k)

n—+o0Q

—P(x =)

*
DEMONSTRATION : Supposons que X ainsi que Xj, X5, ... sont a valeurs dans N. Raisonnons ensuite par double-
implication.

Supposons (Xn =, X). Soit k € N.

—+00

Puisque X et X1, X5, ...

sont a valeurs entieres et que k € N, on a :

P(IX = k) = P(IX < k) = P(1x < k—1)
= Fx(k) = Fx(k =1)
et:
P(IX, = k) = (X, < k) = (X, < k—1)
= Fx, (k) = Fx,(k=1)

On a envie de passer a

que, puisque X, X5, ...
1

Vn e N, P(X, < k) = P ([xﬂgmf]) - P(X, < k1]

2

Ainsi, pour tout n € N* :

P, - k)

2 2

converge en loi vers X, on a :

1 1
m (“5) =FX(“§) '

Dot :

lim P([X,

n—+o0

:m:a«mé)fa(

e ([vers2]) e (fres-1])

= P(X <K]) -
= P(X =«

(Vk €N,
i P = )

Conclusion : (X,, % X) ==

Supposons 'Vk € N,

k— —

2

lim (X, = k) = P(IX

:P“n<k+ﬂ)—P“%<k_ﬂ)
el d) e [ee )

1 1 1
Or k + = et k — = n'appartiennent pas a X(()), donc Fx est continue en kK + = et k —

2

n—+o00

k).

= P([X = k])". Montrons que (X,),en+ converge en loi vers X.

Soit x € R tel que Fyx est continue en x. On a, pour tout n € N* :

FXH(X):IP([X” gx]) X est & val i
,» est & valeurs entiéres
P <)/ y
[x] puisque X,(Q) C N, on a [X, <
= ]P([Xn - k}) L. k=0
o des événements de la famille ([X,, = k])/\'F[[O,[XJ]]
Or:vkeN, lim P([X, = k]) = P([X = k]). D'ou, par somme :

>

[x]
lim Fyx, (x)

n—+00 Z]P([X - k])
1)

)

~

(
(

//\ //\

Il
J R H

X
X
x(x)

D'ol la convergence en lot de (X,),en+ vers X.

EXeEmMPLE 5

Question classique 39.

J arguments similaires a ce qui précéde

J X est a valeurs entiéres
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1
lim F)(n(k—z) =Fx(

J X est a valeurs entieres

U X, = k]; puis par incompatibilité

la limite quand n — 400, mais on ne peut pas! En effet, puisque X(Q) C N, la
fonction de répartition de X n’est a priori pas continue en k et k —1...
sont a valeurs entieres, on a :

Contournons le probleme en remarquant

:]P([X,,gkf1+—

1
—. Ainsi, puisque (X;)pen+

— Important ! ———

V'S

On part de :
X < k]l=[X=kKU[X <K]

Ensuite, puisque X est a valeurs
entieres et que k € N, on a

X < k] =[X < k=1 Et
on mentionne l'incompatibilité de
X =klet[X < k—1].

En fait, nous avons établi
“m Fx,(x) = Fx(x) pour tous

n—
les reels X.. méme ceux en les-
quels Fx n'est pas continue.
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[l THEOREME CENTRAL LIMITE

THEOREME 5 THEOREME CENTRAL LIMITE

Soit (Xi)ren+ une suite de variables aléatoires indépendantes, de méme loi, d'espérance m et de variance o>
non nulle.

On pose, pour tout n € N* :

X,

—m

vn

> X X = % — EX)

a(X,) o
Dans ce cas, la suite (7,7*)
Autrement dit :

converge en lot vers une variable aléatoire suivant la loi A47(0; 1).

x]) = [ \/;;ﬂe’%dt

neN*

VxeR, lim P(X," <

n—-+00
Ou encore : .
Y(a,b)eR? [a<b=— lim Pla< X, <b =/ e*?dr)
(@.5) Lm Pl V=, 7=
Lorsque n est suffisamment grand, on pourra considérer que : P([a < X, < b)) = P(la < Z < b]) ol

7 < N (0;1).

*
DEMONSTRATION : Il en existe différentes démonstrations, dont une trés courte, mais hors de portée avec nos outils.
D'autres plus longues... On en trouvera une dans la derniére partie du sujet ESSEC II E 2022. .

IV APPROXIMATIONS DE VARIABLES ALEATOIRES

THEOREME 6 APPROXIMATION D'UNE LOI BINOMIALE PAR UNE LOI DE PoissoN

Soient A € R*™ et (X,),en+ une suite de variables aléatoires sur (Q, A, P).
A

Si:¥ne N, X, > 4% (n, 7), alors : la suite (X,),en+ converge en loi vers une variable aléatoire suivant la
n

loi de Poisson de paramétre A.

* -
DEMONSTRATION : Cas particulier de Question classique 39.

]

THEOREME 7

APPROXIMATION D'UNE LOI BINOMIALE PAR UNE LOI NORMALE (HP ?)

Soient p €]0; 1] et (X,)nen+ une suite de variables aléatoires telles que : Vn € N*, X, — ZB(n; p).
X, —np

Vnp(T=p)

Dans ce cas, la suite (X};),en- converge en loi vers une variable aléatoire suivant la loi 47(0; 1).

On pose, pour tout n € N*, X =

*
DEMONSTRATION :
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— Un peu d’histoire

4 Dans sa toute premiére version,

les variables aléatoires X1, X5, ...
suivaient une lot de Bernoulli de
parametre p. Sous cette condition,
on parle alors de théoreme de
Moivre-Laplace.

Abraham de Moivre (1667-1754,
francais) l'a démontré en 1733

1
dans le cas ol p = =, puis

Laplace dans le cas général au
début du XIX®™ siecle.

Autrement dit :

Quand on centre et qu'on ré-
duit la moyenne empirique d'une
suite de VA iid de variance non
nulle, la VA obtenue converge
en lot vers une VA suivant la lot
A(0;1).

En pratique...

Lorsque 0 < np < 10 (cest a dire
que si n est grand, p doit étre
petit) on approche la loi Z(n; p)
par la loi Z2(np).

On voit parfois les conditions :
n>=30etp<O1

Important !

Les deux théorémes qui suivent
ne sont pas explicitement au pro-
gramme... Il est donc d'autant plus
important de savoir les redémon-
trer.



https://jeremylegendre.fr/wp-content/uploads/Questions-classiques.pdf

— En pratique...

Lorsque n > 30, np > 5 et
* [ n(1—p) =5 (cestadire que si n
est grand, p doit étre ni trop petit

. o * . P ; ; ni trop grand) on approche la loi
Conséquence : si, pour tout n € N*, X, — Z(n; p), alors on peut considérer que pour n suffisamment grand, X, suit B p) par la loi A (np; np(1 —

approximativement la lot A (np; np(1 — p)). 4.

En effet : On voit parfois les conditions :
avec les notations du théoréme 7, la suite (X7),en+ converge en loi vers une variable aléatoire Z suivant la loi &ijg ;tjfépg'r;hmauon w
JV(O, 1) fait a espérance et variance

constantes.

On peut donc considérer que pour n grand, la variable aléatoire X, se comporte comme la variable aléatoire

np(1 —p)Z + np. = Rappel... ————

Or Z — A4(0;1), donc \/np(1 — p)Z + np — A (np; np(1 — p)). D'l le résultat. Soient a,b € R avec a 4 0.

St X — A (; 0%), alors
EXEMPLE 6

(aX + b) — N (ap + b; a’0?)
1
On effectue 10000 lancers, supposés indépendants, d'une méme piece donnant PILE avec la probabilité =. On note X

la variable aléatoire égale au nombre de PILE obtenus. Déterminons une valeur approchée de IP([X & [4900; 5100]])
et de PP ([X = 5000]).

THEOREME 8 APPROXIMATION D'UNE LOI DE P0ISSON PAR UNE Lol NORMALE (HP ?)

Sotent a > 0 et (X,),en+ une suite de variables aléatoires telles que : Vn € N*, X, — Z(na).
0 tout n € N*, X* = L n
n pose, pour tout n X = .
P P \/T(Y

Dans ce cas, la suite (X};),en= converge en loi vers une variable aléatoire suivant la loi A47(0; 1).
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*
DEMONSTRATION :

i

Conséquence : si, pour tout n € N*, X, — Z(na), alors on peut considérer que pour n suffisamment grand, X, suit .
approximativement la lot A (na; na). En pratique...

En effet : Lqrsque A2=15 on approche la
. S . " . . L. . . loi Z2(A) par la loi A(A, A).
avec les notations du théoréme 8, la suite (X, ),en= converge en loi vers une variable aléatoire Z suivant la lol || encore, Lapproximation se

A(0;1). fait a espérance et variance

Sz . s . . 1 . constantes.
On peut donc considérer que pour n grand, la variable aléatoire X, se comporte comme la variable aléatoire

vnaZ + na.

= Rappel...
Or Z — A(0;1), donc vVnaZ + na — A (na; na). D'ol le résultat.

Sotent a,b € R avec a # 0.
Si X — A (y; 0%), alors
(aX + b) — N (ap + b; a’0?)
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