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PROBABILITES

CONVERGENCE DE SUITES DE VARIABLES ALEATOIRES

INTRODUCTION...

Ce chapitre met l'accent sur deux théoremes fondamentaux en théorie des probabilités et en statistiques : la lot faible des grands nombres et le
théoreme central limite.

La lot faible des grands nombres est due a Pafnouti Tchebychev (1821-1894, russe) qui la démontra en utilisant une inégalité énoncée par Irénée-Jules
Bienaymé (1796-1878, francais) et démontrée par Tchebychev lui-méme.

Quant au théoreme central limite : des cas particuliers ont d'abord été démontrés par Abraham de Moivre (1667-1754, francais) et Laplace, mais
concernant la version générale, qui l'a démontrée en premier? En 1920, il semble que Alexandre Liapounov (1857-1918, russe) et Jarl Waldemar
Lindeberg (1876-1932, finlandais) en aient tous deux fournt une démonstration différente. En 1922, Paul Lévy (1886-1971, frangais) démontre le
théoreme qui porte son nom, dont le TCL est une conséquence immédiate, et permet ainsi a Lindeberg d'en donner une version avec des hypothéses
amoindries! Comme bien souvent, ce théoréme est le fruit de collaborations plus ou moins volontaires entre des mathématiciens d'époques et de
nationalités variées.

Il est important de noter que ['Histoire se rapproche! Nous sommes a présent au début du XX®™ siécle, qui demeurera sans aucun doute le siécle de
l'essor des probabilités comme branche légitime des mathématiques.
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Dans tout le chapitre, (Q, A, IP) désigne un espace probabilisé et X une variable aléatoire définie sur cet espace.

| INEGALITES DE MARKOV ET BIENAYME-TCHEBYCHEV

THEOREME 1

St X est a valeurs positives et admet une espérance, alors :

va e R, P(IX > d]) < ——

INEGALITE DE MARKOV

*
DEMONSTRATION : Soit a € R,

e Si X est discréte.

aP(X >d]) =a Z P([X = x])
xeX(Q), x=a
= Y aP(x=x)
xeX(Q), x=a
< Z xP([X = x])

xeX(Q), x=a

Z xP([X = x])

XEX(Q)

IN

—E(X)

Dot le résultat, puisque a > 0.

e Si X est a densité.
En notant f une densité de X :

aP(X 2 a]) =a /+oo f(x)dx

+

= af(x)dx

a+oo
< / xf(x)dx

+00
< / xf(x)dx
0
)

—_————

—E(X), car X(Q) € R*

D'ous le résultat, puisque a > 0.

J Vx > a, aP([X = x)) < xP([X

J X est a valeurs positives

X]) (car une probabilité est positive)

Vx > a, af(x) < xf(x) (car f positive) et par croissance de

l'intégrale

J a >0 et pour tout x € R*, xf(x) >0

e Dans le cas oli X est quelconque : Question classique 37.

| EXEMPLE 1 I

Dot :

P(IX]" > a]) <

Or, par stricte croissance de la fonction ." sur R™ (

a’

X

et a sont dans RY) :

IXI" = '] =[IX] = d]

P(|X]" > a']) = P([1X] > a])

Soient r € N* et X une variable aléatoire sur (), A, IP) admettant un moment d'ordre r. Démontrons :

E(IX|"
Ya e R™, P([|X] = a]) < E(IXI)
af
Soit @ € R™.
v |X|" est a valeurs positives,
v |X|" admet une espérance, car X admet un moment d'ordre r (donc |X"| admet une espérance et |X"| = | X|).
Ainsi, d'apres l'inégalité de Markov :
‘ : E(IX]")
Vb e R™, lP( k’}/)])éii
; h
En prenant b = ad', licite car a" > 0 :
E([X]")

o~

- _E
onclusion : P([|X| > a]) < —
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Remarque —————

Sauf précision, les variables
aléatoires étudiées seront quel-
conques (discrétes, a densité ou ni
discréte ni a densité).

— Remarque —————

Selon le programme, la connais-
sance de l'inégalité de Mar-

kov n'est pas exigible, mais elle
semble parfois nécessaire a l'oral
d'HEC.. Il faut, dans tous les cas,
en connaitre des démonstrations.

— Interprétation ——

4 e Si a < EX), linégalité n'ap-

porte rien, car alors v > 1.

o Le résultat est donc intéressant
st a est grand par rapport a E(X).
Dans ce cas, l'inégalité affirme
qu'il est peu probable que X
prenne des valeurs trop grandes
par rapport a E(X).

o Cette inégalité a l'avantage
d'étre valable pour toutes les
variables aléatoires positives ;
avantage : elle est tres générale.
Inconvénient : la majoration de
P([X > a]) nest souvent pas trés
fine.

On a méme la résultat suivant :
st f est une fonction strictement
croissante et positive sur un in-
tervalle /, st X est une variable
aléatoire a valeurs dans /, alors
pour tout b € [ tel que f(b) > 0,

E(f(X
ona:P(X>=b]) < (f((b)))

— Important !

La stricte croissance est né-
cessaire, puisqu'il s'agit en fait
d'établir que pour tout w € Q,
X' > o > |X|(w) > a.
Et on sait que la stricte monoto-
nie est nécessaire pour “désappli-
quer” une fonction, méme sur des
inégalités larges.
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En conséquence de l'inégalité de Markov :

INEGALITE DE BIENAYME-TCHEBYCHEV

THEOREME 2

St X admet une variance, alors :

Va € R™, P([|X — E(X)| > d])

-

* - r
DEMONSTRATION : Supposons que X admette une variance. Soit a € R™

On sait que
)

V(X) = E((X — E(X)) )

)

Appliquons l'inégalité de Markov a la variable aléatoire (X — E(X))
v (X - E(X))/ est a valeurs positives,
v (X - E(X))Z admet une espérance, car X admet une variance.

Ainsi, d'apres l'inégalité de Markov :

E((XfE(X))})

vb e R™, P([(X —E(X))* > b)) ;

<

En prenant b = a?, licite car a” > 0, et par définition de V(X) :

V
a

(X

)
2

)

P([(x~ W) > o’]) <
Or, par stricte croissance de la fonction /7 sur R* (@ € R) :

[(X—EX)" 2 0*] = [IX—E(X)| > d]

Dol :
P([(X —E(X)’ > ’]) = P([X ~EX)| > a
Conclusion : P([|X — E(X)| > a]) < V((y)j),

| EXEMPLES 2 |

Lors de U'épreuve de mathématiques organisée par 'EMLyon, la moyenne des notes est égale a 10 et 'éca

type & 4. On modélise par une variable aléatoire X la note d'un candidat choisi au hasard. A l'aide de l'inéqgalité
Bienaymé-Tchebychev, démontrons que P([5 < X < 15]) > 0, 36.

e Ona:
LXK =-5<X—-10<5]
=[|X—=10] <5
=[X—10] > 5]

e Ensuite, puisque X(Q) est borné (X(Q) C [0;20]), la variable aléatoire X admet une variance.
Ainsi, d'apres l'inégalité de Bienaymé-Tchebychev :

Va € R™, P([|X — 10| > d])

D'ol, avec a =5 :
) 42
P((X - 10 >3) < o
Et:
42 4\?
52 \5
=0,8°
=0,64
Donc :

P([[X — 10| > 5]) < 0,64
Or [[X — 10| > 5] C [|[X — 10| = 5]. Ainsi, par croissance de IP :
P([|X — 10| > 5]) < P([|X —10] > 5])

D'ot, par transitivité :

P([|X — 10| > 5]) < 0,64
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de

= Rappel...

X admet une variance si, et
seulement si, X admet un mo-
ment d'ordre 2.

— = Pour info...

L'inégalité de BT est un cas d'in-
égalité de concentration.

Elle permet d'estimer la proba-
bilité qu'une variable aléatoire
s'écarte de sa moyenne.

Tout comme l'inégalité de Markoy,
elle est générale mais la majora-
tion fournie n'est pas tres fine...
On peut déja remarquer que st
lon prend a < o(X), Uinégalité
de BT est inutile !

Important !
47\1)( eR, V2 = .

Remarque
A a fixé, on voit que plus V(X)
est petite, X aura tendance a
étre proche de E(X). La variance
traduit bien une mesure de dis-
persion de la variable aléatoire
autour de son espérance.

Pourquoi ?
St | X(w) —10] > 5, alors | X(w) —
10| > 5..

Donc st w € [|[X —10] > 5],
alors w € [|X — 10| > 5| D'ou
l'inclusion.




Par conséquent :

1= P([|X = 10| > 5]) > 0,64

Conclusion : IP([5 <X K 15}) >0, 36.

On suppose maintenant que X < .4'(10; 4). A l'aide de la table de la loi .#7(0; 1), déterminons une valeur approchée
de P([5 < X < 19)).

Ona:
5 X—-10 _5 % Notation
P([5<X§15]) =P ([*Z < ] < Z]) ’ X —10 X —10 On note ¢ la fonction de ré-
J X — A(10;4%), donc y — A(0;1) et y est a densité partition d'une VA suivant la lot
B (5) (D( 5) N (0:1).
4 4 J Vx €R, &(—x) =1— d(x) Remarque
= 2P(1,25) -1 Dans ce cas, on est bien au-
dessus de la minoration obtenue
=~ 0,7888 précédemment...
Soient n € [2; +oo] et Xy, X5, ..., X, des variables aléatoires définies sur (Q, A, IP), indépendantes et suivant

— 1
toutes la méme lot de Bernoulli de paramétre p €]0; 1[. On note X, = - ZXkA
k=1

= Pour info...

2 : X, —p|l =€) < — —
Démontrons : Ve > 0, IP(HX” pl=> 8]) = 4pe?’ < La variable aléatoire nX, est la
Soit € > 0. La variable aléatoire X, est une combinaison linéaire de variables aléatoires admettant une variance Zom?rft (ljae S)_V%(‘”;jedp;:cdz';ist_)

H H . \ N . ) « e s . ; utv L i n
(car les X suit la lot de Bernoulli de parametre p), donc X, admet une variance et, d'apres l'inégalité de Bienaymé- | g(y: p). g

Tchebychey, licite car € > 0 :

P(I% — E(%)| > o) < Y

;
£2
Or :

e X, admet une espérance (car admet une variance) et :
n
1
IR
n
k=1
,I n
— > E(Xy)
n
k=1
/I n
TP
k=1

1
=—np
n

p

E(X,) = E

J linéarité de l'espérance

J vk e [1;n], Xi — B(p)

® puis :

\Y

<
=
I

1 n
P
> X
k=1
,l n
- ;vm)
,] n
- ;pm —p)

1
= —np(1—p)
n

1
-V
n?

J X1, ..., X, sont indépendantes

J Vk e [1;n], Xk — Bp)

_p(1—=p)
n
On obtient ainsi : % )
v pit—p
P([|X, —p| > ¢]) < —=—
ne ~ .
] A retenir... —————
. . , . L . n. 1
Enfin, une rapide étude de fonction permet d'établir : Vx € [0; 1], x(1 — x) < 7 %ourtoutp e[0:1], p(1—p) < 3
Dot : 1
1—p)< =
P —=p)< 5
Conclusion : P([|X, — p| > €]) < L
4ne?
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Il Lol FAIBLE DES GRANDS NOMBRES

Avant d'énoncer ce célebre théoréme, commencons par deux résultats immédiats sur la moyenne empirique...

Soit (Xk)ren+ une suite de variables aléatoires indépendantes admettant toutes la méme espérance notée m et la méme
n

variance notée ¢”. Soit n € N*. Notons X, = — E X, Justifions que X, posseéde une espérance et une variance et
n
k=1
déterminons-les.

e La variable aléatoire X, est une combinaison linéaire de variables aléatoires admettant une espérance, donc X,
admet une espérance et :

n
— 1
E(X,)=E |- > X
n =1 / linéarité de l'espérance
,I n
=—) EX)
n
k=1
,] n
= — m
n
k=1
= —nm
n
=m
e La variable aléatoire X, est une combinaison linéaire de variables aléatoires admettant une variance, donc X,

admet une variance et :

V(X,)

I
<
S| =

M™M=
Pt

, Xn sont indépendantes

/ X,

THEOREME 3 Lol FAIBLE DES GRANDS NOMBRES

1 &
Soit (Xi)ken+ une suite de variables aléatoires sur (Q, A, IP). Pour tout n € N*, on note X, = — E Xk.
n
k=1

St (X )ken+ est une suite de variables aléatoires indépendantes, admettant toutes la méme espérance m et la
méme variance o2 (C'est le cas si elles ont toutes la méme loi) alors

¥e >0, lim P([X, —m|>e]) =0

*
DEMONSTRATION : Question classique 38

| EXEMPLES 3 I

E1 | On considére une variable aléatoire X admettant une espérance et une variance. On suppose l'existence d’une
fonction Python nommée simule_X permettant de simuler une réalisation de X.
A quoi peut-on s'attendre lors de l'exécution du programme suivant?

]

{L=[simule_X() for k in range (10000)]
{print (sum(L)/len(L))

Apres l'exécution du programme ci-dessus :

e la liste L contiendra 10000 réalisations indépendantes de X;

e le programme affichera la moyenne des valeurs la liste L.
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Vocabulaire

X, est la moyenne empirique de
X1, X0, o, Xo.

Vocabulaire

On dit que la suite (X;),en+
converge en probabilité (vocabu-
laire HP) vers la variable aléa-
toire constante égale a m.

Utile ?
Pour tout € >0, on a:
1Xo = m| > €] C[|X, —m| > €]
On a donc également :
nETmIP(“)T”7 m|>e]) =0



https://jeremylegendre.fr/wp-content/uploads/Questions-classiques.pdf

Considérons alors une suite (Xj)cen+ de variables aléatoires indépendantes, suivant toutes la méme loi que X.
n

Notons, pour tout n € N*, X, = — > Xi. Lexécution du programme affichera une réalisation de Xjogoo-
n
k=1
Or, (Xi)ren+ est une suite de variables aléatoires :

v indépendantes,
v/ admettant toutes la méme espérance égale a E(X) et la méme variance (car toutes ont la méme lot que X).

Par conséquent, d'apres la lot faible des grands nombres :

Ve >0, lim P([[X, —E(X)|

n—-+o00

5}):0

Ainsi, pour n suffisamment proche de +oo, toute réalisation de X, fournit une valeur approchée de E(X).

Conclusion : U'exécution du programme permet d'obtenir une valeur approchée de E(X) (sur 10000 réalisations
indépendantes de X)).

Dans le méme contexte, a quoi peut-on s'attendre lors de l'exécution du programme suivant?

c=0
for k in range (10000):
if simule_X()>O0:
c=c+1
print (c/10000)

Le programme ci-dessus simulera 10000 réalisations indépendantes de X et comptera, a l'aide du compteur ¢, le
nombre de fois ol, sur ces 10000 réalisations, on obtient une réalisation strictement positive. Le programme affichera

1y

ensuite le rapport correspondant donc a la fréquence d'apparition de l'évenement [X > 0] sur les 10000

C
10000
répétitions indépendantes.

Considérons une suite (Xi)ren+ de variables aléatoires indépendantes suivant toutes la loi de Bernoullt de parameétre
n

1

— > Xk

n
k=1

(Xk)ken+ est une suite de variables aléatoires :

IP(:X > O]) Notons, pour tout n € N*, X,

v/ indépendantes,

v admettant toutes la méme espérance égale a ]P([X > OU notée p (espérance commune aux Xi qui suivent
une lot de Bernoulli de parametre P([X > O])) et la méme variance (car toutes ont la méme loi).

Par conséquent, d'apres la lot faible des grands nombres :

Ve >0, lim P([X,—p|>¢])=0
+

n—-+o00

Ainsi, pour n suffisamment proche de +o0, toute réalisation de X, fournit une valeur approchée de p.

Conclusion : lexécution du programme permet d'obtenir une valeur approchée de IP([X > O) (sur 10000
réalisations indépendantes de X).

n
De surcroit, ZX* prend comme valeurs le nombre de réalisations de l'évenement [X > 0] sur n réalisations in-
k=1
dépendantes de X. Par conséquent, X, est le fréquence d'apparition de l'événement [X > 0] sur n réalisations
indépendantes de X.
On vient donc d'établir que la fréquence d'apparitions de [X > 0] sur un grand nombre de réalisations indépen-
dantes de X fournit une valeur approchée de IP([X > 0]).

1.1

DEFINITION 1 CONVERGENCE EN LOI

Soient X une variable aléatoire sur (QQ, A, P) et (X,),en+ une suite de variables aléatoires sur (Q), A, P). On note
Fx la fonction de répartition de X et, pour tout n € N*, on note Fx, la fonction de répartition de X,,.
On dit que la suite (X,),en+ converge en loi vers X lorsque, pour tout x ol Fx est continue, on a :

CONVERGENCE EN LOI

DEFINITION ET PREMIERS EXEMPLES

lim Fx, (x) = Fx(x)

n—+o0
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#» Rédaction

Un tel niveau de détails n'est
pas toujours nécessaire. On peut
parfois se contenter de dire que
le programme affiche la moyenne
empirique de 10000 réalisations
indépendantes de la méme VA X
admettant une espérance et une
variance ; et que, d'aprés la LIGN,
cette moyenne empirique fournit
une valeur approchée de E(X).

o

A retenir...
La moyenne empirique d'un grand
nombre de réalisations d'une VA
fournit une valeur approchée de
son espérance.

A retenir...
La fréquence d'apparition d'un
événement sur un grand nombre
de répétitions est une valeur
approchée de la probabilité de cet
événement.

% Notation

<z
On note X, — X.
n—-+0a

Attention : Xgtmp—=X{@]. Il n'y

a d'ailleurs pas unicité de X :
toute variable aléatoire ayant

la méme lot que X convient. En
revanche, il y a unicité de la
fonction limite de (Fx,),en+. Et
comme la fonction de répartition
caractérise la loi, c'est parfait : il
y a unicité de la loi limite.

o

Important !

On examine, a x fixé, la limite
de Fyx,(x) quand n — —+o0 (on
parle de convergence simple de
la suite de fonctions (Fx,)hen :
vocabulaire HP).




& METHODE 1 & Pour établir que X, % X :

e On commence par rappeler (ou déterminer) la fonction de répartition de X et celles de X, pour tout n € N*.

e On fixe x dans R sauf en les points de discontinuité de Fx (st X est a densité, Fx est continue, donc x sera
dans R entier).

e On examine alors lim Fx, (x), en observant bien les disjonctions de cas sur Fx(x)...

& Méthode !

Il se peut que L'‘énoncé soit for-
mulé ainsi "Montrer que (Xj)pen*
converge en loi vers une variable
aléatoire X dont on précisera la
loi."; la méthode ne change alors
pas beaucoup...

n—-+00
| EXEMPLES 4 I

1
Pour tout n € N*, on considére une variable aléatoire X, suivant la loi exponentielle de paramétre 1+ —.

Montrons que (X,),en+ converge en loi vers une variable aléatoire X suivant la lot exponentielle de paramétre 1'/7
Notons, pour tout n € N*, F, la fonction de répartition de X, et F celle d'une variable aléatoire X suivant la lot
exponentielle de parametre 1.

On a, pour tout n € N* :

WxeR F B 0 six <0
XERFal) = 1—e (30 §ix >0
atnst que :
0 six <0
VX*RF(X)7{179 six >0
La fonction F est continue sur R, soit donc x € R.
e Six<O0:
On a, pour tout n € N*, F,(x) =0, dol :
lim F,(x)=0
n—-+00

e Six>0: ‘
On a, pour tout n € N*, F,(x) =1 —e (7).

1
Or lim donc: lim — (1 + f) X
n—-+o00 n

I
|
>

1
(Hf) o
n—-+00 n

.. D'ot, par composition et opération :

lim 1—e (a0 =1 _ ¢
n—-+090
On a donc établi :
Vx e R, lim F,(x) = F(x)

n——+00

Conclusion :
parametre 1.

la suite (X,),en+ converge en lot vers une variable aléatoire X suivant la loi exponentielle de

-1 1
Pour tout n € N*, on considére une variable aléatoire X, suivant la lot uniforme sur [T; ;] Montrons que

(Xh)nen+ converge en lot vers une variable aléatoire X suivant la lot certaine égale a 0.

Notons, pour tout n € N*, F, la fonction de répartition de X, et F celle d'une variable aléatoire X suivant la lot
certaine égale a 0.

On a, pour tout n € N~

—1
0 Stx < —
X+ 1 11
Vx e R, F,(x) = IWZ stx € {777]}
n
—1
1 stx > —

ainst que :

. 0 six<O0
Vx € R, F(X):{ 1 x>0

La fonction F est continue sur R, sauf en 0, soit donc x € R".
e Six<0:

. =1 _ -1
Puisque x < 0 et que lim — =0, pour n suffisamment proche de 400, on a x < —.
o N n

n—+o0

Dans ce cas, pour n suffisamment proche de +00, on a F,(x) = 0. Et ainsi :

lim F,(x)=0

n—-+o00

e Six>0:
1 _ 1
lim — =0, pour n suffisamment proche de +o00, on a x > —.
n—-+oo N n
Dans ce cas, pour n suffisamment proche de +00, on a F,(x) = 1. Et ainsi :

Puisque x > 0 et que

lim F,(x) =1

n—-+o00
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X Attention !
F est continue sur R, on doit
donc établir llT Falx) = F(x)
n—+0o00

pour tout x € R.

Remarque

Pour visualiser la convergence de
la suite des fonctions de réparti-
tions : ict.

= Rappel...

Fonction de répartition d'une VA
suivant la lot % ([a; b)) :

0 six<a
X—a
F:x— st x € [a; b]
b—a
stx>b

X Attention !
F n'est pas continue en 0, on exa-
mine donc lim F,(x) seulement
n—+o00

pour x € R*.
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On a donc établi :

Vx € R, lim F,(x) = F(x) Remarque
n—-+o00
Pour visualiser la convergence de
|Conclusion : la suite (X,),en+ converge en loi vers une variable aléatoire X suivant la loi certaine égale a 0. | la suite des fonctions de réparti-
_ tions : ici.

1 1
Pour tout n € N*, on considére une variable aléatoire X, telle que P([X, = 0]) = 1— - et P([X, = n]) = -

Montrons que (X,),en+ converge en lot vers une variable aléatoire X dont on précisera la loi.
Notons, pour tout n € N*, F, la fonction de répartition de Xi,.

On a, pour tout n € N~ ¥ Astuce du chef ¥

Pour s'aider dans la disjonction

0 ] stx <0 de cas, on peut, dans sa téte,

o . n. ‘faire tendre n — +oo dans

YxeR. Faly) = 1= E stx €[0; ”{ < les différents intervalles’ des
1 stx>=n expressions de F,.. On voit alors,

qu'ici, le troisieme cas n'existera
plus lorsque n — +o0.

Soit x € R.
e Six<O0:

On a, pour tout n € N*, F,(x) =0, dol :
lim F,(x)=0

n—+o00

e Six>0:
Puisque x > 0 et que lim n = oo, pour n suffisamment proche de 400, on a x < n.
n—+oQo

: 1 o
Dans ce cas, pour n suffisamment proche de +o0, on a f,(x) =1— —. Et ainsi :
n

lim Fu(x) =1

n—-+oQ

On a donc établi :
Vx € R, lim F,(x)=F(x)

n—-+o0
. 0 six<O : L , . . . ! :
ol F:x+— 1 x>0 " Or F est la fonction de répartition d'une variable aléatoire suivant la loi certaine
st x >
égale a 0... Remarque
Pour visualiser la convergence de
|Conclusion : la suite (X,),en+ converge en loi vers une variable aléatoire X suivant la loi certaine égale a 0. la suite des fonctions de réparti-
- tions : icl.
A A . : A A 1
Pour tout n € N*, on considére une variable aléatoire X, suivant la loi exponentielle de parametre —. Montrons
n
que (X,)nen+ Ne converge pas en loi.
Notons, pour tout n € N*, F, la fonction de répartition de Xi,.
On a, pour tout n € N* :
0 stx <0
Vx e R, F,(x) = { Remarque

T—en sixz0 Lorsqu'on ne sait pas s'il y a
. convergence ou que l'on ne
Soit x € R. connatlt pas la lot limite, on quan-

e Six<0: tifie x dans R, puis on avise en-

. suite si besoin...
On a pour tout n € N*, F,(x) =0, d'oli :
lim F,(x) =0
n—-+00

e Six>0:
On a pour tout n € N*, F(x) =1 —e 7. Or lim -

n—+oo

). Donc, par composition et opérations :

lim F,(x)=0

n—+o00

On a donc établi :
Vx eR, lim F,(x)=0

n—+o0

Or la fonction constante égale a 0 n'est pas une fonction de répartition. — Remarque

Les exemples ci-dessus mettent en

Conclusion : la suite (X,),en+ Ne converge pas en lot. evidence qu'il n'y a pas toujours
_ convergence en loi; et que, si

convergence, les cas 'discret’ —

Question classique 40. "discret’, "a densité” — "a densité”

et 'a densité" — 'discret’ peuvent

QueStlon ClaSSique 41. se produire. Le cas ‘discret’ — "a
densité” est également possible...

[ES]
[E6

o

THEOREME 4 CAs "DISCRET" — "DISCRET" DANS N.

Important !

Toutes les variables aléatoires

en jeu doivent étre discretes (le
résultat est en fait valable si les
variables aléatoires sont discretes,
non nécessairement a valeurs
dans N) !

Soient X une variable aléatoire sur (Q, A, P) et (X,),en+ une suite de variables aléatoires sur (QQ, A, IP).
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St X(Q) € N et, pour tout n € N*, X,(Q) C N, alors :

(X% 5 X) = (vke X,

n—+o00

lim P([X, = k)

n—+o0Q

—P(x =)

*
DEMONSTRATION : Supposons que X ainsi que Xj, X5, ... sont a valeurs dans N. Raisonnons ensuite par double-
implication.

Supposons (Xn =, X). Soit k € N.

—+00

Puisque X et X1, X5, ...

sont a valeurs entieres et que k € N, on a :

P(IX = k) = P(IX < k) = P(1x < k—1)
= Fx(k) = Fx(k =1)
et:
P(IX, = k) = (X, < k) = (X, < k—1)
= Fx, (k) = Fx,(k=1)

On a envie de passer a

que, puisque X, X5, ...
1

Vn e N, P(X, < k) = P ([xﬂgmf]) - P(X, < k1]

2

Ainsi, pour tout n € N* :

P, - k)

2 2

converge en loi vers X, on a :

1 1
m (“5) =FX(“§) '

Dot :

lim P([X,

n—+o0

:m:a(mé)fa(

e ([vers2]) e (fres-1])

= P(X <K]) -
= P(X =«

(Vk €N,
i P = )

Conclusion : (X,, % X) ==

Supposons 'Vk € N,

k— —

2

lim (X, = k) = P(IX

:P“n<k+ﬂ)—P“%<k_ﬂ)
el d) e [ee )

1 1 1
Or k + = et k — = n'appartiennent pas a X(()), donc Fx est continue en kK + = et k —

2

n—+o00

k).

= P([X = k])". Montrons que (X,),en+ converge en loi vers X.

Soit x € R tel que Fyx est continue en x. On a, pour tout n € N* :

FXH(X):IP([X” gx]) X est & val i
,» est & valeurs entiéres
P <)/ y
[x] puisque X,(Q) C N, on a [X, <
= ]P([Xn - k}) L. k=0
o des événements de la famille ([X,, = k])/\'F[[O,[XJ]]
Or:vkeN, lim P([X, = k]) = P([X = k]). D'ou, par somme :

>

[x]
lim Fyx, (x)

n—+00 Z]P([X - k])
1)

)

~

(
(

//\ //\

Il
J R H

X
X
x(x)

D'ol la convergence en lot de (X,),en+ vers X.

| Exempie 5 |
Question classique 39.

J arguments similaires a ce qui précéde

J X est a valeurs entiéres
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1
lim F)(n(k—z) =Fx(

J X est a valeurs entieres

U X, = k]; puis par incompatibilité

la limite quand n — 400, mais on ne peut pas! En effet, puisque X(Q) C N, la
fonction de répartition de X n’est a priori pas continue en k et k —1...
sont a valeurs entieres, on a :

Contournons le probleme en remarquant

:]P([X,,gkf1+—

1
—. Ainsi, puisque (X;)pen+

— Important ! ———

V'S

On part de :
X < k]l=[X=kKU[X <K]

Ensuite, puisque X est a valeurs
entieres et que k € N, on a

X < k] =[X < k=1 Et
on mentionne l'incompatibilité de
X =klet[X < k—1].

En fait, nous avons établi
“m Fx,(x) = Fx(x) pour tous

n—
les reels X.. méme ceux en les-
quels Fx n'est pas continue.


https://jeremylegendre.fr/wp-content/uploads/Questions-classiques.pdf

[l THEOREME CENTRAL LIMITE

THEOREME 5 THEOREME CENTRAL LIMITE

Soit (Xi)ren+ une suite de variables aléatoires indépendantes, de méme loi, d'espérance m et de variance o>
non nulle.
On pose, pour tout n € N* :

%o EX)

X, —m

a(Xy) a

Dans ce cas, la suite (7,7*)
Autrement dit :

ene Converge en loi vers une variable aléatoire suivant la loi .47(0; 1).

—x A 2
Vx e R, lim P([X, <x =/ e  Zdt
n—-+00 ({ }) —o0 \/E
Ou encore : .
Y(a,b)eR? [a<b=— lim Pla< X, <b =/ e*?dr)
(@.5) Lm Pl V=, 7=
Lorsque n est suffisamment grand, on pourra considérer que : P([a < X, < b)) = P(la < Z < b]) ol

7 < N (0;1).

*
DEMONSTRATION : Il en existe différentes démonstrations, dont une trés courte, mais hors de portée avec nos outils.
D'autres plus longues... On en trouvera une dans la derniére partie du sujet ESSEC II E 2022. .

IV APPROXIMATIONS DE VARIABLES ALEATOIRES

THEOREME 6 APPROXIMATION D'UNE LOI BINOMIALE PAR UNE LOI DE PoissoN

Soient A € R*™ et (X,),en+ une suite de variables aléatoires sur (Q, A, P).
A

Si:¥ne N, X, > 4% (n, 7), alors : la suite (X,),en+ converge en loi vers une variable aléatoire suivant la
n

loi de Poisson de paramétre A.

*
DEMONSTRATION : Cas particulier de Question classique 39.

]

THEOREME 7

APPROXIMATION D'UNE LOI BINOMIALE PAR UNE LOI NORMALE (HP ?)

Soient p €]0; 1] et (X,)nen+ une suite de variables aléatoires telles que : Vn € N*, X, — ZB(n; p).
X, —np

Vnp(T=p)

Dans ce cas, la suite (X};),en- converge en loi vers une variable aléatoire suivant la loi 47(0; 1).

On pose, pour tout n € N*, X =

*
DemonsTraTION : Considérons (Yi)ren+ une suite de variables aléatoires indépendantes suivant toutes la lot de
n
Bernoullt de parametre p, de sorte que pour tout n € N*, X, = > Y.
k=1
On pose, pour tout n € N

- 1 v _ Yo —EV,
V== Y Y e

e On a, pour tout n € N

v Ya—E(V)
" oY) / Yi, ... Y, sont indépendantes, de loi %B(p), d'espérance p et décart-type \/p(1 — p)
:ﬁi%%g W
ilx 7; J V=
=/n—1t_
p(1=p)
vn X, —np
~ o bl )
X, —np
B np(1—p)
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— Un peu d’histoire

4 Dans sa toute premiére version,

les variables aléatoires X1, X5, ...
suivaient une lot de Bernoulli de
parametre p. Sous cette condition,
on parle alors de théoreme de
Moivre-Laplace.

Abraham de Moivre (1667-1754,
francais) l'a démontré en 1733

1
dans le cas ol p = =, puis

Laplace dans le cas général au
début du XIX®™ siecle.

— Autrement dit :

Quand on centre et qu'on ré-
duit la moyenne empirique d'une
suite de VA iid de variance non
nulle, la VA obtenue converge
en lot vers une VA suivant la lot
A(0;1).

En pratique...

Lorsque 0 < np < 10 (cest a dire
que si n est grand, p doit étre
petit) on approche la loi Z(n; p)
par la loi Z2(np).

On voit parfois les conditions :
n>=30etp<O1

Important !

Les deux théorémes qui suivent
ne sont pas explicitement au pro-
gramme... Il est donc d'autant plus
important de savoir les redémon-
trer.
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e Puisque la suite (Yi)ken est une suite de variables aléatoires indépendantes, de méme loi, ayant une variance
non nulle, d'apres le théoreme central limite :

ol Z — A(0;1).

XH — NL £ \
P2, Z, ot Z — A(0;1).

el ) | N

Conséquence : si, pour tout n € N*, X, — Z(n; p), alors on peut considérer que pour n suffisamment grand, X, suit
approximativement la lot A (np; np(1 — p)). 4
En effet :
avec les notations du théoréme 7, la suite (X7),en+ converge en loi vers une variable aléatoire Z suivant la loi
A7(0; 7).

Conclusion :

— En pratique...

Lorsque n > 30, np > 5 et
n(1—p) =5 (cest a dire que st n
est grand, p doit étre ni trop petit
nt trop grand) on approche la loi
AB(n; p) par la loi A (np; np(1 —
p).

On voit parfois les conditions :
n>30etp <01

Notons que l'approximation se
fait a espérance et variance
constantes.

On peut donc considérer que pour n grand, la variable aléatoire X, se comporte comme la variable aléatoire

Vnp(1—p)Z+ np.

Or Z — A4(0;1), donc \/np(1 — p)Z + np — A (np; np(1 — p)). D'l le résultat. <

— == Rappel...

Soient a, b € R avec a # 0.
St X — A (; 0%), alors

(aX + b) < A (au + b; a*d?)

| EXEMPLE 6 |

1
On effectue 10000 lancers, supposés indépendants, d'une méme piece donnant PILE avec la probabilité =. On note X

la variable aléatoire égale au nombre de PILE obtenus. Déterminons une valeur approchée de IP([X & [4900; 5100]])
et de PP ([X = 5000]).

° * L'expérience consiste en 10000 répétitions indépendantes de la méme épreuve de Bernoulli dont le
succes ‘obtenir PILE" est de probabilité 5>
* La variable aléatoire X compte le nombre de succes sur ces 10000 répétitions.

1
Par conséquent, X suit la loi binomiale de parametre 10000 et 5

e Ona:

P([X & [4900;5100]) = IP ( —100 {XfSOOO 100 ])

< < ———
V2500 ~ | /2500 V2500

e )
<2)

N

J théoréme 7

ol Z — A(0;1). En notant ® la fonction de répartition de Z, on a, puisque Z est a densité :

~P(-2<7

P(-2< 7 <2) = b@2) — d(—2)

o / Vx € R, ®(—x) =1—d(x)
20(2) — 1

0, 9544

o

1

Conclusion : IP([X & [4900;5100])) =~ 0,9544.

e Puisque X est a valeurs entiéres, on a :
IP([X = 5000]) = ]P([X € [4999, 5; 5000,5]])

P ([70,01 < X =200 go,m])
/2500

~ P([-0,01 < Z <0,01])

J théoreme 7

ot Z — A(0;1). En notant ® la fonction de répartition de Z, on a, puisque Z est a densité :

P([-0,01 < Z <0,01]) = $(0,01) — &(—0,01)
— 20(0,01) — 1 / Vx R, d(—x) =1—d(x)
~ 0,008

Conclusion : IP([X = 5000) ~0,008.

THEOREME 8 APPROXIMATION D'UNE LOI DE P0ISSON PAR UNE Lol NORMALE (HP ?)

Sotent a > 0 et (X,),en+ une suite de variables aléatoires telles que : Vn € N*, X, — Z(na).
X, — na

Jna

Dans ce cas, la suite (X};),en= converge en loi vers une variable aléatoire suivant la loi A47(0; 1).

On pose, pour tout n € N*, X =
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— = Pour info...

En fait, lapproximation peut étre
rendue meilleure en raisonnant
plus finement...

En effet, puisque X est a valeurs
dans N,ona:Vk €N, P(X =
K]) =P ([k—0,5 < X < k+0,5]).
Ainsi - PP([4900 < X < 5100]) =
P([4899,5 < X < 5100, 5]).

Et Uapproximation est meilleure
en utilisant P([4899,5 < X <
5100, 5]) Clest ce que l'on appelle
la correction de continuité.




* ~ . ’ . . y . . y . .
DemonsTRATION : Considérons (Yi)ren+ une suite de variables aléatoires indépendantes suivant toutes la lot de

n
Poisson de parametre «, de sorte que pour tout n € N*, X, = g Y.
k=1

On pose, pour tout n € N* :

e On a, pour tout n € N* :

Vn X, —na

n

X, — na
Vna

n . 7” - E(?H)

7”11 Yoo Yo = ——=—

>

P o(Ys)

J Yy, ..., Y, sont indépendantes, de loi &2(a), despérance a et d'écart-type /o

e Puisque la suite (Yi)ren+ est une suite de variables aléatoires indépendantes, de méme loi, ayant une variance
non nulle, d'apres le théoreme central limite :

olt Z — A(0;1).
X/r —na <

Conclusion : ———— == 7, ol Z — A4(0;1).

A/ Na n—-+o0a

|

Conséquence : si, pour tout n € N*, X, — Z(na), alors on peut considérer que pour n suffisamment grand, X, suit

approximativement la loi A (na; na).

En effet :

avec les notations du théoreme 8, la suite (X),en= converge en loi vers une variable aléatoire Z suivant la loi

N(0;1).

On peut donc considérer que pour n grand, la variable aléatoire X, se comporte comme la variable aléatoire

vnaZ + na.

Or Z — A(0;1), donc vVnaZ + na — A (na; na). D'ol le résultat.
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o

— En pratique...

Lorsque A > 15 on approche la
loi Z2(A) par la loi A(A, A).

La encore, 'approximation se
fait a espérance et variance
constantes.

— = Rappel...

Soient a, b € R avec a # 0.
Si X — A (y; 0%), alors

(aX + b) — A (ap + b; a’0?)
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