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AnalyseÉquations différentielles

Introduction...

Les équations différentielles sont apparues au XVIIème siècle, alors que Newton et Leibniz (entre autres) mettent en place les théories de dérivation etd’intégration ; tout en s’intéressant de près aux phénomènes d’évolutions physiques et en particulier à la mécanique.Ce n’est qu’à partir du XVIIIème siècle que la résolution de ces équations a été possible, grâce notamment aux travaux d’Euler. De nombreuxmathématiciens (D’Alembert, Cauchy, Lipschitz, Lagrange...) ont ensuite œuvré à développer la théorie des équations différentielles.
Nous allons nous intéresser à un cas bien particulier d’équations différentielles ; mais il faut savoir qu’il n’existe pas de méthode systématique pourrésoudre de façon exacte toutes les équations différentielles. Pour cette raison, une branche entière des mathématiques - l’analyse numérique - développedes méthodes et algorithmes performants qui permettent la résolution approchée de ces équations très utiles dans de nombreux domaines (mécanique,électricité, économie, chimie...).

Chapitre 15 - Page 1/9

www.jeremylegendre.fr


Dans tout le chapitre, I désigne un intervalle non vide de R.
I Généralités sur les équations différentielles
I.1 Premières définitions

Définitions 1 Équation différentielle, solution, trajectoire, équilibre

D1 On appelle équation différentielle toute équation reliant une fonction y (suffisamment régulière) et uneou plusieurs de ses dérivées.
D2 Soient n ∈ N∗ et a0, a1, ..., an, b des fonctions définies et continues sur I , telles que an n’est pas lafonction nulle.On appelle équation différentielle linéaire d’ordre n une équation de la forme :

any(n) + an−1y(n−1) + ... + a1y′ + a0y = b

où y ∈ C n(I, R) est la fonction inconnue.
D3 Par convention, la fonction y et ses dérivées sont toutes sur le même membre de l’équation ; et le resteest sur l’autre membre. Dans le cas où ce second membre est la fonction nulle, on dira que l’équationdifférentielle est homogène.
D4 Une solution d’une équation différentielle est une fonction suffisamment régulière sur l’intervalle donnévérifiant l’égalité de fonctions. Résoudre l’équation différentielle, c’est trouver toutes ses solutions.
D5 Une trajectoire d’une équation différentielle est la courbe d’une solution de cette équation différentielle.
D6 Un équilibre d’une équation différentielle est une solution constante de cette équation différentielle.

Souvent, f est la lettre désignantune fonction étudiée. Pour évitertoute ambiguïté, on notera y la
fonction inconnue d’une équationdifférentielle.

Remarque

Les fonctions a0, a1, ..., an sontles coefficients de l’équation
différentielle.

Vocabulaire

Il s’agit d’une égalité de fonc-tions !
✘ Attention !

Si l’intervalle I n’est pas précisé,on considérera par défaut qu’ils’agit de R.
Remarque

Exemples 1

E1 L’équation y′′ × y′ + 3y2 = g, où y ∈ C 2(R, R) et g : x 7−→ ex + x2 − 1, est une équation différentielle. Unesolution f de cette équation différentielle est une fonction de classe C 2 sur R telle que :
∀x ∈ R, f ′′(x) × f ′(x) + 3f (x)2 = ex + x2 − 1

Pour éviter de nommer le membre de droite, on écrira l’équation différentielle ainsi :
y′′ × y′ + 3y2 = ex + x2 − 1

Il faut bien être conscient quec’est un abus de notation : lemembre de gauche est une fonc-tion, alors que le membre dedroite est un réel, et x n’est mêmepas quantifié ! Bref, c’est un peuune abomination ce truc... sansdoute une écriture due à des phy-siciens ou des économistes...

Confusion d’objets !

E2 Sont des équations différentielles linéaires :
y′ + 2y = 2x2 ; y′′ − 3y′ + 2y = 0 ; y′′′ − 3y′ + y = ex + 1 ; y′ + 2xy = 0 Une équation différentielle estlinéaire lorsque le membre degauche est une expression li-néaire en y...

En fait...

E3 Ne sont pas des équations différentielles linéaires :
y′ + y2 = 0 ; y′

y = x ; y′y = ex

E4 L’équation (E ) : y′ − 2xy = 2x2 − 1, où y ∈ C 1(R, R), est une équation différentielle linéaire d’ordre 1 ; et(EH ) : y′ − 2xy = 0 est son équation différentielle homogène associée.
• Montrons que pour tout λ ∈ R, la fonction fλ : x 7−→ λex2 est solution de (EH ).Soit λ ∈ R.La fonction fλ est de classe C 1 sur R et, pour tout x ∈ R :

f ′λ(x)− 2xfλ(x) = 2xλex2 − 2xλex2
= 0

Conclusion : pour tout λ ∈ R, la fonction fλ : x 7−→ λex2 est solution de (EH ).
• Cherchons une solution de (E ) qui soit dans R1[x ]. On la notera fp . On a ainsi trouvé une solution

particulière de (E ).
Vocabulaire

Soit f ∈ R1[x ]. Il existe alors a, b ∈ R, que l’on considère ensuite, tels que pour tout x ∈ R, f (x) = ax + b.On a : (
f est solution de (E )) ⇐⇒ f ′ − 2xf = 2x2 − 1

⇐⇒ ∀x ∈ R, f ′(x)− 2xf (x) = 2x2 − 1
⇐⇒ ∀x ∈ R, a − 2x(ax + b) = 2x2 − 1
⇐⇒ ∀x ∈ R, −2ax2 − 2bx + a = −1
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⇐⇒


−2a = 2

− 2b = 0
a = −1

⇐⇒
{

a = −1
b = 0

Conclusion : l’unique solution de (E ) qui soit dans R1[x ] est la fonction fp : x 7−→ −x .
I.2 La linéarité, c’est le pied !

Cette structure de l’ensemble dessolutions est importante et nousguide sur la méthode à mettre enœuvre pour résoudre une EDL...
Important !

Propriétés 1 Structure de l’ensemble des solutions d’une EDL

Soient (E ) une équation différentielle linéaire et (EH ) son équation différentielle linéaire homogène associée.Notons SE l’ensemble des solutions de E , SH l’ensemble des solutions de (EH ).
P1 SH est un espace vectoriel.
P2 Toute solution de (E ) est obtenue en ajoutant à une solution particulière de (E ) une solution quelconquede (EH ). Autrement dit :

solution généralede l’EDL = solution particulièrede l’EDL + solution générale del’équation homogène associée
Ou encore, en notant fp une solution particulière de E :

SE = {
fp + fH / fH ∈ SH

}
⋆ Démonstration : Démontrons ce résultat dans le cas particulier d’une EDL1 normalisée à coefficient constant. La démonstration est analoguedans le cas général...

Remarque

Soient a ∈ R, I un intervalle de R, b ∈ C (I, R ) et :(E ) : y′ + ay = bd’inconnue y ∈ C 1(I, R). On a : SH = {y ∈ C 1(I, R) / y′ + ay = 0}.
P1. • SH ⊂ C 1(I, R) et C 1(I, R) est un espace vectoriel.

• SH est non vide car la fonction nulle vérifie l’équation y′ + ay = 0.
• Montrons que SH est stable par combinaison linéaire.Soient f , g ∈ SH et λ, µ ∈ R. Être dans SH c’est deux choses :être de classe C 1 sur I et vérifierl’équation y′ + ay = 0.

Important !

✱ Puisque f , g ∈ SH , on a f , g ∈ C 1(I, R). Donc λf +µg ∈ C 1(I, R), car C 1(I, R) est stable par combinaisonlinéaire.

✱ Ensuite, par linéarité de la dérivation :(λf + µg)′ + a(λf + µg) = λf ′ + µg′ + λaf + µag= λ(f ′ + af ) + µ(g′ + ag)
f , g ∈ SH= 0

Par conséquent : λf + µg ∈ SH . Ainsi, SH est stable par combinaison linéaire.
Conclusion : SH est un espace vectoriel.

P2. Soit y ∈ C 1(I, R) et supposons connue une solution particulière de (E ), notée fp . On a :
y ∈ SE ⇐⇒ y′ + ay = b

fp solution de (E ), donc f ′p + afp = b⇐⇒ y′ + ay = f ′p + afp linéarité de la dérivation⇐⇒ (y − fp)′ + a(y − fp) = 0
⇐⇒ y− fp ∈ SH

⇐⇒ ∃fH ∈ SH / y − fp = fH

⇐⇒ ∃fH ∈ SH / y = fp + fH

Conclusion : SE = {
fp + fH / fH ∈ SH

}.
⋆

Propriété 2 Principe de superposition

Soient a0, a1, ..., an ainsi que b1 et b2 des fonctions continues sur I .On considère les équations différentielles suivantes :
(E1) : any(n) + an−1y(n−1) + ... + a1y′ + a0y = b1 et (E2) : any(n) + an−1y(n−1) + ... + a1y′ + a0y = b2Si f1 est une solution particulière de (E1) et f2 une solution particulière de (E2), alors pour tous λ1, λ2 ∈ R, la
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fonction λ1f1 + λ2f2 est solution particulière de
any(n) + an−1y(n−1) + ... + a1y′ + a0y = λ1b1 + λ2b2

⋆ Démonstration : Soient f1 une solution particulière de (E1) et f2 une solution particulière de (E2). Soient également
λ1, λ2 ∈ R.Puisque f1 et f2 sont des solutions respectives de (E1) et (E2), elles sont de classe C n sur I , et donc λf1 +µf2 également.Puis, par linéarité de la dérivation, on a :

n∑
k=0 ak (λ1f1 + λ2f2)(k ) = n∑

k=0 ak
(
λ1f (k )1 + λ2f (k )2 )

linéarité de la somme
= λ1

n∑
k=0 ak f (k )1 + λ2

n∑
k=0 ak f (k )2

f1 est solution de (E1) et f2 de (E2)= λ1b1 + λ2b2
Conclusion : la fonction λ1f1 + λ2f2 est solution de any(n) + an−1y(n−1) + ... + a1y′ + a0y = λ1b1 + λ2b2 . ⋆

Exemple 2Une solution particulière de y′ + y = 1 est la fonction f1 : x 7−→ 1.Une solution particulière de y′ + y = x est la fonction f1 : x 7−→ x − 1.
Conclusion : par principe de superposition, une solution particulière de y′ + y = 3 + 2x est la fonction
fp : x 7−→ 2x + 1.

Ciblons maintenant sur l’essentiel : les équations différentielles linéaires d’ordres 1 et 2 à coefficients constants.

II EDL du premier ordre à coefficients constants
Définition 2 EDL1 à coefficients constants

Soient a0 et a1 des réels tels que a1 ̸= 0 et b une fonction définie et continue sur I .On appelle équation différentielle linéaire d’ordre 1 à coefficients constants une équation de la forme :
a1y′ + a0y = b

où y ∈ C 1(I, R) est la fonction inconnue.Puisque a1 ̸= 0, on a, pour tout y ∈ C 1(I, R) :
a1y′ + a0y = b ⇐⇒ y′ + a0

a1 y = b
a1 On dit alors qu’on a normalisél’équation différentielle.

Vocabulaire

Dans la suite, nous ne considérerons que des EDL1 normalisées de la forme : y′ + ay = b(a ∈ R, b une fonction continue sur I).Si l’EDL1 n’est pas normalisée, on commencera toujours par le faire...
II.1 Résolution d’une EDL1Dans la première partie, nous avons vu le résultat :

solution généralede l’EDL = solution particulièrede l’EDL + solution générale del’équation homogène associée
L’idéal serait maintenant de voir comment :
• résoudre l’équation différentielle homogène y′ + ay = 0,
• trouver une solution particulière de y′ + ay = b...

On retrouve la structure d’espacevectoriel de l’ensemble des solu-tions de y′ + ay = 0. On en amême une base : (
x 7−→ e−ax ).

Remarque

Théorème 1 Résolution de y′ + ay = 0

Soit a ∈ R. (
f est solution de y′ + ay = 0)

⇐⇒
(
∃λ ∈ R, ∀x ∈ I, f (x) = λe−ax)Autrement dit : l’ensemble des solutions de y′ + ay = 0 est {

x ∈ I 7−→ λe−ax , λ ∈ R
}.
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⋆ Démonstration : Il s’agit de démontrer une équivalence. Raisonnons par double implication.
⇐ Supposons qu’il existe λ ∈ R, que nous considérons ensuite, tel que : ∀x ∈ I, f (x) = λe−ax .

✱ La fonction x 7−→ −ax est affine donc C 1 sur I . Par conséquent, f est C 1 sur I . Une solution de y′ + ay = 0 estune fonction f qui vérifie :
• f est C 1 sur I ,
• f ′ + af = 0.

✓ Rigueur !
✱ Pour tout x ∈ I :

f ′(x) + af (x) = −aλe−ax + aλe−ax= 0
Ainsi f est solution de y′ + ay = 0.

⇒ Soit f une solution de y′ + ay = 0. Montrons : ∃λ ∈ R / ∀x ∈ I, f (x) = λe−ax .Transformons le résultat à établir... On a :
∃λ ∈ R / ∀x ∈ I, f (x) = λe−ax ⇐⇒ ∃λ ∈ R / ∀x ∈ I, f (x)eax = λ

Posons alors la fonction g : x 7−→ f (x)eax et montrons qu’elle est constante sur I .La fonction f est C 1 sur I , car elle est solution de y′ + ay = 0, donc la fonction g est C 1 sur I , comme produitde telles fonctions et, pour tout x ∈ I :
g′(x) = f ′(x)eax + f (x)aeax= eax(f ′(x) + af (x))

f est solution de y′ + ay = 0= 0
Par conséquent, la fonction g est dérivable et de dérivée nulle sur un intervalle, cette fonction est donc constantesur I . Il existe donc un réel λ tel que pour tout x ∈ I , g(x) = λ. Autrement dit :

∃λ ∈ R / ∀x ∈ I, f (x) = λe−ax

Conclusion :
(
f est solution de y′ + ay = 0)

⇐⇒
(
∃λ ∈ R, ∀x ∈ I, f (x) = λe−ax)

Une fonction dérivable et dedérivée nulle sur R∗ est-elleconstante sur R∗ ?
Question :

⋆

Exemples 3

E1 L’équation y′+2y = 0 est une équation différentielle linéaire d’ordre 1 homogène à coefficients constants dontl’ensemble des solutions est {
x 7−→ λe−2x , λ ∈ R

}.
E2 On considère l’équation différentielle y′ − 3y = 6, d’inconnue y ∈ C 1(R, R).Cette équation est une équation différentielle linéaire d’ordre 1 à coefficients constants.
• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de y′ − 3y = 0 est {

x 7−→ λe3x , λ ∈ R
}.

• Solution particulière.On remarque que la fonction x 7−→ −2 est une solution particulière de (E ). Il n’y a pas de méthode généralepour déterminer une solutionparticulière... Une idée à avoir entête : la chercher "sous la mêmeforme" que le second membre.

Remarque

Conclusion : l’ensemble des solutions l’équation différentielle y′ − 3y = 6 est {
x 7−→ −2 + λe3x , λ ∈ R

}.
E3 Résolvons l’équation différentielle y′ + y = x + 1, d’inconnue y ∈ C 1(R, R).Cette équation est une équation différentielle linéaire d’ordre 1 à coefficients constants.
• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de y′ + y = 0 est {

x 7−→ λe−x , λ ∈ R
}.

• Solution particulière.On remarque que la fonction x 7−→ x est une solution particulière de (E ).
Conclusion : l’ensemble des solutions l’équation différentielle y′ + y = x + 1 est {

x 7−→ x + λe−x , λ ∈ R
}.

♣ Méthode 1 ♣ Pour déterminer une solution particulière de y′ + ay = b :
• soit on en trouve une évidente (en appliquant éventuellement le principe de superposition pour décomposer larecherche) ; en particulier, si b est constante, la fonction constante x 7−→ b

a convient ;
• soit on se laisse guider par l’énoncé...

II.2 Problème de Cauchy sur EDL1D’après ce qui précède, nous pouvons affirmer que l’équation (E ) : y′ + ay = b admet une infinité de solutions... Enrevanche, le théorème suivant permet, grâce à une contrainte supplémentaire, d’obtenir l’unicité d’une solution.
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Théorème 2 de Cauchy sur EDL1

Si a est un réel et b une fonction continue sur I , alors pour tous x0 ∈ I et y0 ∈ R, le problème {
y′ + ay = b
y(x0) = y0 ,d’inconnue y ∈ C 1(I, R), possède une et une seule solution.

⋆ Démonstration : En exercice. ⋆

Un tel problème est appelé pro-
blème de Cauchy et la condition
y(x0) = y0 en est la condition
initiale.

Vocabulaire

Ce théorème permet alors de dire que si deux trajectoires d’une EDL1 ont un point commun, alors elles sont identiques.Ou bien, par contraposée : deux trajectoires différentes d’une EDL1 ne se croisent jamais.Ou encore : deux trajectoires d’une EDL1 sont soit identiques, soit d’intersection vide. Si deux trajectoires ont un pointcommun, en (x0, y0), alors lesdeux solutions associées vérifientle même problème de Cauchy...
En effet :

♣ Méthode 2 ♣ Pour résoudre un problème de Cauchy :
• on résout l’équation différentielle linéaire d’ordre 1 donnée,
• on utilise la condition initiale donnée pour déterminer la valeur de la constante λ dans la forme générale dessolutions.

III EDL du second ordre à coefficients constants
Définition 3 EDL2 à coefficients constants

Soient a0, a1, a2 des réels tels que a2 ̸= 0 et b une fonction définie et continue sur I .On appelle équation différentielle linéaire du second ordre à coefficients constants une équation de la forme :
a2y′′ + a1y′ + a0y = b

où y ∈ C 2(I, R) est la fonction inconnue.Puisque a2 ̸= 0, on a, pour tout y ∈ C 2(I, R) :
a2y′′ + a1y′ + a0y = b ⇐⇒ y′′ + a1

a2 y′ + a0
a2 y = b

a2 On dit alors qu’on a normalisél’équation différentielle.
Vocabulaire

Dans la suite, nous ne considérerons que des EDL2 normalisées de la forme : y′′ + ay′ + by = c(a, b ∈ R, c une fonction continue sur I).Si l’EDL2 n’est pas normalisée, on commencera toujours par le faire...
III.1 Résolution d’une EDL2Dans la première partie, nous avons vu le résultat :

solution généralede l’EDL = solution particulièrede l’EDL + solution générale del’équation homogène associée
L’idéal serait donc maintenant de voir comment :
• résoudre l’équation différentielle homogène y′′ + ay′ + by = 0,
• trouver une solution particulière de y′′ + ay′ + by = c...

Pour l’équation homogène, commençons par une petite définition, qui n’est pas sans nous rappeler quelques souvenirs...
Définition 4 Équation caractéristique

Soient a, b ∈ R.L’équation r2 + ar + b = 0, d’inconnue r ∈ R, est appelée équation caractéristique de l’équation différentielle
y′′ + ay′ + by = 0.

On retrouve la structure d’espacevectoriel de l’ensemble des solu-tions de y′′ + ay′ + by = 0. Onen a même une base :
• si ∆ > 0 :(

x 7−→ er1x , x 7−→ er2x )
• si ∆ = 0 :(

x 7−→ xer0x , x 7−→ er0x )

Remarque

Théorème 3 Résolution de y′′ + ay′ + by = 0

Soient a, b ∈ R et ∆ le discriminant associé à l’équation caractéristique r2 + ar + b = 0.

Chapitre 15 - Page 6/9



T1 Si ∆ > 0, alors l’équation r2 + ar + b = 0 admet deux solutions distinctes r1 et r2 et :(
f est solution de y′′ + ay′ + by = 0)

⇐⇒
(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x)

Autrement dit : l’ensemble des solutions de y′′ + ay′ + by = 0 est {
x ∈ I 7−→ λer1x + µer2x , (λ, µ) ∈ R2}.

T2 Si ∆ = 0, alors l’équation r2 + ar + b = 0 admet une solution r0 et :(
f est solution de y′′ + ay′ + by = 0)

⇐⇒
(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = (λx + µ)er0x)

Autrement dit : l’ensemble des solutions de y′′ + ay′ + by = 0 est {
x ∈ I 7−→ (λx + µ)er0x , (λ, µ) ∈ R2}.

⋆ Démonstration :
T1. Supposons ∆ > 0 et notons r1 et r2 les deux solutions distinctes de r2 + ar + b = 0.Il s’agit de démontrer une équivalence. Raisonnons par double implication.

⇐ Supposons qu’il existe λ, µ ∈ R, que l’on considère ensuite, tels que : ∀x ∈ I, f (x) = λer1x + µer2x .La fonction f est de classe C 2 sur I et, pour tout x ∈ I :
f ′′(a) + af ′(x) + bf (x) = λr21er1x + µr22er2x + a

(
λr1er1x + µr2er2x) + b

(
λer1x + µer2x)

= λer1x (r21 + ar1 + b) + µer2x (r22 + ar2 + b)
r1 et r2 sont solutions de r2 + ar + b = 0= 0

Ainsi f est solution de y′′ + ay′ + by = 0.
⇒ Soit f une solution de y′′ + ay′ + by = 0. Montrons : ∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x .Transformons le résultat à établir... On a :

∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x ⇐⇒ ∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x)e−r1x = λ + µe(r2−r1)x
Posons alors la fonction g : x 7−→ f (x)e−r1x .La fonction f est de classe C 2 sur I , car elle est solution de y′′ + ay′ + by = 0, donc la fonction g estégalement de classe C 2 sur I et, pour tout x ∈ I :

g′(x) = f ′(x)e−r1x − r1f (x)e−r1x= e−r1x(f ′(x)− r1f (x))
puis :

g′′(x) = −r1e−r1x(f ′(x)− r1f (x)) + e−r1x(f ′′(x)− r1f ′(x))= e−r1x(f ′′(x)− 2r1f ′(x) + r21 f (x))
f est solution de y′′ + ay′ + by = 0= e−r1x(− af ′(x)− bf (x)− 2r1f ′(x) + r21 f (x))= e−r1x((−a − 2r1)f ′(x) + (r21 − b)f (x))
r1 + r2 = −a et r1r2 = b= e−r1x((r2 − r1)f ′(x)− r1(r2 − r1)f (x))= (r2 − r1)e−r1x(f ′(x)− r1f (x)) calcul ci-dessus= (r2 − r1)g′(x)

Si x2 − Sx + p = 0 admetdeux solutions (distinctes ou non)notées x1 et x2 , alors x1 + x2 = Set x1x2 = P (car on a alors
x2 − Sx + p = (x − x1)(x − x2)...).

☞ Rappel...

Par conséquent, la fonction g′ est solution de l’équation y′− (r2−r1)y = 0, qui est une équation différentiellelinéaire d’ordre 1 à coefficients constants. Il existe donc α ∈ R, que l’on considère ensuite, tel que :
∀x ∈ I, g′(x) = αe(r2−r1)x

Et donc, puisque r2−r1 ̸= 0 (car r1 ̸= r2) et que I est un intervalle, il existe λ ∈ R, que l’on considère ensuite,tel que pour tout x ∈ I : Le fait que I soit un intervalle estnécessaire... Si h′ = 0 sur ℜ, alorsil existe deux constantes C1 et C2telles que h = C1 sur ] −∞; 0[ et
h = C2 sur ]0; +∞[...

Important !

g(x) = λ + α
r2 − r1 e(r2−r1)x

En posant µ = α
r2 − r1 , on obtient :

∀x ∈ I, g(x) = λ + µe(r2−r1)x
Autrement dit :

∀x ∈ I, f (x) = λer1x + µer2x

Conclusion :
(
f est solution de y′′ + ay′ + by = 0)

⇐⇒
(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x).

T2. Supposons ∆ = 0 et notons r0 l’unique solution de r2 + ar + b = 0. Raisonnons par double implication.
⇐ Sans difficulté, en utilisant le fait que r20 + ar0 = b = 0...
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⇒ On raisonne de la même façon que pour T1 ; en posant cette fois g : x 7−→ f (x)e−r0x .La fonction g est de classe C 2 sur I et, de la même façon que précédemment, on obtient, pour tout x ∈ I : Les calculs de g′(x) et de g′′(x)du cas précédent sont encorevalables : ils ne nécessitaient pasque r1 ̸= r2 .
Remarque

g′′(x) = 0Puisque I est un intervalle, il existe donc un réel λ tel que pour tout x ∈ I , g′(x) = λ. Et donc :
∃(λ, µ) ∈ R2 / ∀x ∈ I, g(x) = λx + µAutrement dit :
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = (λx + µ)er0x

Conclusion :
(
f est solution de y′′ + ay′ + by = 0)

⇐⇒
(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = (λx + µ)er0x).

⋆

Exemples 4

E1 L’équation y′′−y′−6y = 0 est une équation différentielle linéaire d’ordre 2 homogène à coefficients constantsdont l’équation caractéristique est r2 − r − 6 = 0. Les solutions de r2 − r − 6 = 0 sont −2 et 3.
Conclusion : l’ensemble des solutions de y′′ − y′ − 6y = 0 est {x 7−→ λe−2x + µe3x , (λ, µ) ∈ R2}.
E2 L’équation y′′+2y′+y = 0 est une équation différentielle linéaire d’ordre 2 homogène à coefficients constantsdont l’équation caractéristique est r2 + 2r + 1 = 0. L’unique solution de r2 + 2r + 1 = 0 est −1.
Conclusion : l’ensemble des solutions de y′′ + 2y′ + y = 0 est {x 7−→ (λx + µ)e−x , (λ, µ) ∈ R2}.
E3 On considère l’équation différentielle y′′ + 2y′ + y = 1, d’inconnue y ∈ C 2(R, R).Cette équation est une équation différentielle linéaire d’ordre 2 à coefficients constants.
• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de l’équation différentielle y′′ + 2y′ + y = 0 est {

x 7−→ (λx + µ)e−x , (λ, µ) ∈ R2}.
• Solution particulière.On remarque que la fonction x 7−→ 1 est une solution particulière de y′′ + 2y′ + y = 1.

Conclusion : l’ensemble des solutions de y′′ + 2y′ + y = 1 est {
x 7−→ 1 + (λx + µ)e−x , (λ, µ) ∈ R2}.

E4 Résolvons l’équation différentielle y′′ − 4y = 4x + 1, d’inconnue y ∈ C 2(R, R).Cette équation est une équation différentielle linéaire d’ordre 2 à coefficients constants.
• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de l’équation différentielle y′′ − 4y = 0 est {

x 7−→ λe2x + µe−2x , (λ, µ) ∈ R2}.
• Solution particulière.Remarquons que :

✱ la fonction x 7−→ −14 est solution particulière de y′′ − 4y = 1.

✱ la fonction x 7−→ −x est solution particulière de y′′ − 4y = 4x .
Par principe de superposition, la fonction x 7−→ −14 − x est solution particulière de y′′ − 4y = 4x + 1.

Conclusion : l’ensemble des solutions de y′′ − 4y = 4x + 1 est {
x 7−→ −14 − x + λe2x + µe−2x , (λ, µ) ∈ R2}.

♣ Méthode 3 ♣ Pour déterminer une solution particulière de y′′ + ay′ + by = c :
• soit on en trouve une évidente (en appliquant éventuellement le principe de superposition pour décomposer larecherche) ; en particulier, si c est constante, la fonction constante x 7−→ c

b (quand b ̸= 0) convient ;
• soit on se laisse guider par l’énoncé...

III.2 Problème de Cauchy sur EDL2D’après ce qui précède, nous pouvons affirmer que l’équation (E ) : y′′ + ay′ + by = c admet une infinité de solutions...En revanche, le théorème suivant permet, grâce à une contrainte supplémentaire, d’obtenir l’unicité d’une solution.

Un tel problème est appelé pro-
blème de Cauchy et les condi-tions y(x0) = y0 et y′(x0) = z0 ensont les conditions initiales.

Vocabulaire

Théorème 4 de Cauchy sur EDL2

Si a et b sont des réels réel et c une fonction continue sur I , alors pour tous x0 ∈ I et y0, z0 ∈ R, le problème{
y′′ + ay′ + by = c
y(x0) = y0 ; y′(x0) = z0 , d’inconnue y ∈ C 2(I, R), possède une et une seule solution.

⋆ Démonstration : Celui-ci, on l’admet !
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⋆

♣ Méthode 4 ♣ Pour résoudre un problème de Cauchy :
• on résout l’équation différentielle linéaire d’ordre 2 donnée,
• on utilise les conditions initiales données pour déterminer les valeurs des constantes λ et µ dans la forme généraledes solutions.

Exemple 5

Résolvons le problème de Cauchy suivant : {
y′′ + y′ − 2y = 1− 2x
y(0) = y′(0) = 0 d’inconnue y ∈ C 2(R, R).

• Résolution de y′′ + y′ − 2y = 1 − 2x .Cette équation est une équation différentielle linéaire d’ordre 2 à coefficients constants.

✱ Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de y′′ + y′ − 2y = 0 est {
x 7−→ λex + µe−2x , (λ, µ) ∈ R2}.

✱ Solution particulière.Remarquons que la fonction x 7−→ x est solution particulière de y′′ + y′ − 2y = 1− 2x .
Conclusion : l’ensemble des solutions de y′′ + y′ − 2y = 1− 2x est {

x 7−→ x + λex + µe−2x , (λ, µ) ∈ R2}.
• Le problème donné est un problème de Cauchy, qui admet donc une unique solution, notée f .D’après ce qui précède, il existe λ, µ ∈ R, que l’on considère ensuite, tels que :

∀x ∈ R, f (x) = x + λex + µe−2x

Ne pas hésiter à commencer parcalculer, pour tout x ∈ R, f ′(x)avant de donner f ′(0)...
RemarqueOr f (0) = f ′(0) = 0, d’où :

λ + µ = 0 ; 1 + λ − 2µ = 0Mais : {
λ + µ = 0

λ − 2µ = −1 ⇐⇒
L2 ← L2 − L1

{
λ + µ = 0
−3µ = −1

⇐⇒

λ = −13
µ = 13

Conclusion : l’unique solution du problème de Cauchy est la fonction f : x 7−→ x − 13ex + 13e−2x .
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