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AnalyseÉquations différentielles et systèmes différentiels

Introduction...

Les équations différentielles sont apparues au XVIIème siècle, alors que Newton et Leibniz (entre autres) mettent en place les théories de dérivation etd’intégration ; tout en s’intéressant de près aux phénomènes d’évolutions physiques et en particulier à la mécanique.Ce n’est qu’à partir du XVIIIème siècle que la résolution de ces équations a été possible, grâce notamment aux travaux d’Euler. De nombreuxmathématiciens (D’Alembert, Cauchy, Lipschitz, Lagrange...) ont ensuite œuvré à développer la théorie des équations différentielles.
Nous allons nous intéresser à un cas bien particulier d’équations différentielles ; mais il faut savoir qu’il n’existe pas de méthode systématique pourrésoudre de façon exacte toutes les équations différentielles. Pour cette raison, une branche entière des mathématiques - l’analyse numérique - développedes méthodes et algorithmes performants qui permettent la résolution approchée de ces équations très utiles dans de nombreux domaines (mécanique,électricité, économie, chimie...).
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Dans tout le chapitre, I désigne un intervalle non vide de R.
I Généralités sur les équations différentielles
I.1 Premières définitions

Définitions 1 Équation différentielle, solution, trajectoire, équilibre

D1 On appelle équation différentielle toute équation reliant une fonction y (suffisamment régulière) et uneou plusieurs de ses dérivées.
D2 Soient n ∈ N∗ et a0, a1, ..., an, b des fonctions définies et continues sur I , telles que an n’est pas lafonction nulle.On appelle équation différentielle linéaire d’ordre n une équation de la forme :

any(n) + an−1y(n−1) + ... + a1y′ + a0y = b

où y ∈ C n(I, R) est la fonction inconnue.
D3 Par convention, la fonction y et ses dérivées sont toutes sur le même membre de l’équation ; et le resteest sur l’autre membre. Dans le cas où ce second membre est la fonction nulle, on dira que l’équationdifférentielle est homogène.
D4 Une solution d’une équation différentielle est une fonction suffisamment régulière sur l’intervalle donnévérifiant l’égalité de fonctions. Résoudre l’équation différentielle, c’est trouver toutes ses solutions.
D5 Une trajectoire d’une équation différentielle est la courbe d’une solution de cette équation différentielle.
D6 Un équilibre d’une équation différentielle est une solution constante de cette équation différentielle.

Souvent, f est la lettre désignantune fonction étudiée. Pour évitertoute ambiguïté, on notera y la
fonction inconnue d’une équationdifférentielle.

Remarque

Les fonctions a0, a1, ..., an sontles coefficients de l’équation
différentielle.

Vocabulaire

Il s’agit d’une égalité de fonc-tions !
✘ Attention !

Si l’intervalle I n’est pas précisé,on considérera par défaut qu’ils’agit de R.
Remarque

Exemples 1

E1 L’équation y′′ × y′ + 3y2 = g, où y ∈ C 2(R, R) et g : x 7−→ ex + x2 − 1, est une équation différentielle. Unesolution f de cette équation différentielle est une fonction de classe C 2 sur R telle que :
∀x ∈ R, f ′′(x) × f ′(x) + 3f (x)2 = ex + x2 − 1

Pour éviter de nommer le membre de droite, on écrira l’équation différentielle ainsi :
y′′ × y′ + 3y2 = ex + x2 − 1

Il faut bien être conscient quec’est un abus de notation : lemembre de gauche est une fonc-tion, alors que le membre dedroite est un réel, et x n’est mêmepas quantifié ! Bref, c’est un peuune abomination ce truc... sansdoute une écriture due à des phy-siciens ou des économistes...

Confusion d’objets !

E2 Sont des équations différentielles linéaires :
y′ + 2y = 2x2 ; y′′ − 3y′ + 2y = 0 ; y′′′ − 3y′ + y = ex + 1 ; y′ + 2xy = 0 Une équation différentielle estlinéaire lorsque le membre degauche est une expression li-néaire en y...

En fait...

E3 Ne sont pas des équations différentielles linéaires :
y′ + y2 = 0 ; y′

y = x ; y′y = ex

E4 L’équation (E ) : y′ − 2xy = 2x2 − 1, où y ∈ C 1(R, R), est une équation différentielle linéaire d’ordre 1 ; et(EH ) : y′ − 2xy = 0 est son équation différentielle homogène associée.
• Montrons que pour tout λ ∈ R, la fonction fλ : x 7−→ λex2 est solution de (EH ).Soit λ ∈ R.La fonction fλ est de classe C 1 sur R et, pour tout x ∈ R :

f ′λ(x)− 2xfλ(x) = 2xλex2 − 2xλex2
= 0

Conclusion : pour tout λ ∈ R, la fonction fλ : x 7−→ λex2 est solution de (EH ).
• Cherchons une solution de (E ) qui soit dans R1[x ]. On la notera fp . On a ainsi trouvé une solution

particulière de (E ).
Vocabulaire

Soit f ∈ R1[x ]. Il existe alors a, b ∈ R, que l’on considère ensuite, tels que pour tout x ∈ R, f (x) = ax + b.On a : (
f est solution de (E )) ⇐⇒ f ′ − 2xf = 2x2 − 1

⇐⇒ ∀x ∈ R, f ′(x)− 2xf (x) = 2x2 − 1
⇐⇒ ∀x ∈ R, a − 2x(ax + b) = 2x2 − 1
⇐⇒ ∀x ∈ R, −2ax2 − 2bx + a = −1
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⇐⇒


−2a = 2

− 2b = 0
a = −1

⇐⇒
{

a = −1
b = 0

Conclusion : l’unique solution de (E ) qui soit dans R1[x ] est la fonction fp : x 7−→ −x .
I.2 La linéarité, c’est le pied !

Cette structure de l’ensemble dessolutions est importante et nousguide sur la méthode à mettre enœuvre pour résoudre une EDL...
Important !

Propriétés 1 Structure de l’ensemble des solutions d’une EDL

Soient (E ) une équation différentielle linéaire et (EH ) son équation différentielle linéaire homogène associée.Notons SE l’ensemble des solutions de E , SH l’ensemble des solutions de (EH ).
P1 SH est un espace vectoriel.
P2 Toute solution de (E ) est obtenue en ajoutant à une solution particulière de (E ) une solution quelconquede (EH ). Autrement dit :

solution généralede l’EDL = solution particulièrede l’EDL + solution générale del’équation homogène associée
Ou encore, en notant fp une solution particulière de E :

SE = {
fp + fH / fH ∈ SH

}
⋆ Démonstration : Voir Question classique 43 pour le cas particulier d’une EDL1 à coefficients constants. La méthodes’adapte dans le cas général. ⋆

Propriété 2 Principe de superposition

Soient a0, a1, ..., an ainsi que b1 et b2 des fonctions continues sur I .On considère les équations différentielles suivantes :
(E1) : any(n) + an−1y(n−1) + ... + a1y′ + a0y = b1 et (E2) : any(n) + an−1y(n−1) + ... + a1y′ + a0y = b2Si f1 est une solution particulière de (E1) et f2 une solution particulière de (E2), alors pour tous λ1, λ2 ∈ R, lafonction λ1f1 + λ2f2 est solution particulière de

any(n) + an−1y(n−1) + ... + a1y′ + a0y = λ1b1 + λ2b2
⋆ Démonstration : Soient f1 une solution particulière de (E1) et f2 une solution particulière de (E2). Soient également

λ1, λ2 ∈ R.Puisque f1 et f2 sont des solutions respectives de (E1) et (E2), elles sont de classe C n sur I , et donc λf1 +µf2 également.Puis, par linéarité de la dérivation, on a :
n∑

k=0 ak (λ1f1 + λ2f2)(k ) = n∑
k=0 ak

(
λ1f (k )1 + λ2f (k )2 )

linéarité de la somme
= λ1

n∑
k=0 ak f (k )1 + λ2

n∑
k=0 ak f (k )2

f1 est solution de (E1) et f2 de (E2)= λ1b1 + λ2b2
Conclusion : la fonction λ1f1 + λ2f2 est solution de any(n) + an−1y(n−1) + ... + a1y′ + a0y = λ1b1 + λ2b2 . ⋆

Exemple 2Une solution particulière de y′ + y = 1 est la fonction f1 : x 7−→ 1.Une solution particulière de y′ + y = x est la fonction f1 : x 7−→ x − 1.
Conclusion : par principe de superposition, une solution particulière de y′ + y = 3 + 2x est la fonction
fp : x 7−→ 2x + 1.

Ciblons maintenant sur l’essentiel : les équations différentielles linéaires d’ordres 1 et 2 à coefficients constants.
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II EDL du premier ordre à coefficients constants
Définition 2 EDL1 à coefficients constants

Soient a0 et a1 des réels tels que a1 ̸= 0 et b une fonction définie et continue sur I .On appelle équation différentielle linéaire d’ordre 1 à coefficients constants une équation de la forme :
a1y′ + a0y = b

où y ∈ C 1(I, R) est la fonction inconnue.Puisque a1 ̸= 0, on a, pour tout y ∈ C 1(I, R) :
a1y′ + a0y = b ⇐⇒ y′ + a0

a1 y = b
a1 On dit alors qu’on a normalisél’équation différentielle.

Vocabulaire

Dans la suite, nous ne considérerons que des EDL1 normalisées de la forme : y′ + ay = b(a ∈ R, b une fonction continue sur I).Si l’EDL1 n’est pas normalisée, on commencera toujours par le faire...
II.1 Résolution d’une EDL1Dans la première partie, nous avons vu le résultat :

solution généralede l’EDL = solution particulièrede l’EDL + solution générale del’équation homogène associée
L’idéal serait maintenant de voir comment :
• résoudre l’équation différentielle homogène y′ + ay = 0,
• trouver une solution particulière de y′ + ay = b...

On retrouve la structure d’espacevectoriel de l’ensemble des solu-tions de y′ + ay = 0. On en amême une base : (
x 7−→ e−ax ).

Remarque

Théorème 1 Résolution de y′ + ay = 0

Soit a ∈ R. (
f est solution de y′ + ay = 0)

⇐⇒
(
∃λ ∈ R, ∀x ∈ I, f (x) = λe−ax)

Autrement dit : l’ensemble des solutions de y′ + ay = 0 est {
x ∈ I 7−→ λe−ax , λ ∈ R

}.
⋆ Démonstration : Il s’agit de démontrer une équivalence. Raisonnons par double implication.
⇐ Supposons qu’il existe λ ∈ R, que nous considérons ensuite, tel que : ∀x ∈ I, f (x) = λe−ax .

✱ La fonction x 7−→ −ax est affine donc C 1 sur I . Par conséquent, f est C 1 sur I . Une solution de y′ + ay = 0 estune fonction f qui vérifie :
• f est C 1 sur I ,
• f ′ + af = 0.

✓ Rigueur !

✱ Pour tout x ∈ I :
f ′(x) + af (x) = −aλe−ax + aλe−ax= 0

Ainsi f est solution de y′ + ay = 0.
⇒ Soit f une solution de y′ + ay = 0. Montrons : ∃λ ∈ R / ∀x ∈ I, f (x) = λe−ax .Transformons le résultat à établir... On a :

∃λ ∈ R / ∀x ∈ I, f (x) = λe−ax ⇐⇒ ∃λ ∈ R / ∀x ∈ I, f (x)eax = λ

Posons alors la fonction g : x 7−→ f (x)eax et montrons qu’elle est constante sur I .La fonction f est C 1 sur I , car elle est solution de y′ + ay = 0, donc la fonction g est C 1 sur I , comme produitde telles fonctions et, pour tout x ∈ I :
g′(x) = f ′(x)eax + f (x)aeax= eax(f ′(x) + af (x))

f est solution de y′ + ay = 0= 0
Par conséquent, la fonction g est dérivable et de dérivée nulle sur un intervalle, cette fonction est donc constantesur I . Il existe donc un réel λ tel que pour tout x ∈ I , g(x) = λ. Autrement dit :

∃λ ∈ R / ∀x ∈ I, f (x) = λe−ax

Conclusion :
(
f est solution de y′ + ay = 0)

⇐⇒
(
∃λ ∈ R, ∀x ∈ I, f (x) = λe−ax)

Une fonction dérivable et dedérivée nulle sur R∗ est-elleconstante sur R∗ ?
Question :

⋆
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Exemples 3

E1 L’équation y′+2y = 0 est une équation différentielle linéaire d’ordre 1 homogène à coefficients constants dontl’ensemble des solutions est {
x 7−→ λe−2x , λ ∈ R

}.
E2 On considère l’équation différentielle y′ − 3y = 6, d’inconnue y ∈ C 1(R, R).Cette équation est une équation différentielle linéaire d’ordre 1 à coefficients constants.
• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de y′ − 3y = 0 est {

x 7−→ λe3x , λ ∈ R
}.

• Solution particulière.On remarque que la fonction x 7−→ −2 est une solution particulière de (E ). Il n’y a pas de méthode généralepour déterminer une solutionparticulière... Une idée à avoir entête : la chercher "sous la mêmeforme" que le second membre.

Remarque

Conclusion : l’ensemble des solutions l’équation différentielle y′ − 3y = 6 est {
x 7−→ −2 + λe3x , λ ∈ R

}.
E3 Résolvons l’équation différentielle y′ + y = x + 1, d’inconnue y ∈ C 1(R, R).Cette équation est une équation différentielle linéaire d’ordre 1 à coefficients constants.
• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de y′ + y = 0 est {

x 7−→ λe−x , λ ∈ R
}.

• Solution particulière.On remarque que la fonction x 7−→ x est une solution particulière de (E ).
Conclusion : l’ensemble des solutions l’équation différentielle y′ + y = x + 1 est {

x 7−→ x + λe−x , λ ∈ R
}.

♣ Méthode 1 ♣ Pour déterminer une solution particulière de y′ + ay = b :
• soit on en trouve une évidente (en appliquant éventuellement le principe de superposition pour décomposer larecherche) ; en particulier, si b est constante, la fonction constante x 7−→ b

a convient ;
• soit on se laisse guider par l’énoncé...

II.2 Problème de Cauchy sur EDL1D’après ce qui précède, nous pouvons affirmer que l’équation (E ) : y′ + ay = b admet une infinité de solutions... Enrevanche, le théorème suivant permet, grâce à une contrainte supplémentaire, d’obtenir l’unicité d’une solution.
Théorème 2 de Cauchy sur EDL1

Si a est un réel et b une fonction continue sur I , alors pour tous x0 ∈ I et y0 ∈ R, le problème {
y′ + ay = b
y(x0) = y0 ,d’inconnue y ∈ C 1(I, R), possède une et une seule solution.

⋆ Démonstration : En exercice. ⋆

Un tel problème est appelé pro-
blème de Cauchy et la condition
y(x0) = y0 en est la condition
initiale.

Vocabulaire

Ce théorème permet alors de dire que si deux trajectoires d’une EDL1 ont un point commun, alors elles sont identiques.Ou bien, par contraposée : deux trajectoires différentes d’une EDL1 ne se croisent jamais.Ou encore : deux trajectoires d’une EDL1 sont soit identiques, soit d’intersection vide. Si deux trajectoires ont un pointcommun, en (x0, y0), alors lesdeux solutions associées vérifientle même problème de Cauchy...
En effet :

♣ Méthode 2 ♣ Pour résoudre un problème de Cauchy :
• on résout l’équation différentielle linéaire d’ordre 1 donnée,
• on utilise la condition initiale donnée pour déterminer la valeur de la constante λ dans la forme générale dessolutions.

III EDL du second ordre à coefficients constants
Définition 3 EDL2 à coefficients constants

Soient a0, a1, a2 des réels tels que a2 ̸= 0 et b une fonction définie et continue sur I .On appelle équation différentielle linéaire du second ordre à coefficients constants une équation de la forme :
a2y′′ + a1y′ + a0y = b

où y ∈ C 2(I, R) est la fonction inconnue.
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Puisque a2 ̸= 0, on a, pour tout y ∈ C 2(I, R) :
a2y′′ + a1y′ + a0y = b ⇐⇒ y′′ + a1

a2 y′ + a0
a2 y = b

a2 On dit alors qu’on a normalisél’équation différentielle.
Vocabulaire

Dans la suite, nous ne considérerons que des EDL2 normalisées de la forme : y′′ + ay′ + by = c(a, b ∈ R, c une fonction continue sur I).Si l’EDL2 n’est pas normalisée, on commencera toujours par le faire...
III.1 Résolution d’une EDL2Dans la première partie, nous avons vu le résultat :

solution généralede l’EDL = solution particulièrede l’EDL + solution générale del’équation homogène associée
L’idéal serait donc maintenant de voir comment :
• résoudre l’équation différentielle homogène y′′ + ay′ + by = 0,
• trouver une solution particulière de y′′ + ay′ + by = c...

Pour l’équation homogène, commençons par une petite définition, qui n’est pas sans nous rappeler quelques souvenirs...
Définition 4 Équation caractéristique

Soient a, b ∈ R.L’équation r2 + ar + b = 0, d’inconnue r ∈ R, est appelée équation caractéristique de l’équation différentielle
y′′ + ay′ + by = 0.

On retrouve la structure d’espacevectoriel de l’ensemble des solu-tions de y′′ + ay′ + by = 0. Onen a même une base :
• si ∆ > 0 :(

x 7−→ er1x , x 7−→ er2x )
• si ∆ = 0 :(

x 7−→ xer0x , x 7−→ er0x )

Remarque

Théorème 3 Résolution de y′′ + ay′ + by = 0

Soient a, b ∈ R et ∆ le discriminant associé à l’équation caractéristique r2 + ar + b = 0.
T1 Si ∆ > 0, alors l’équation r2 + ar + b = 0 admet deux solutions distinctes r1 et r2 et :(

f est solution de y′′ + ay′ + by = 0)
⇐⇒

(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x)

Autrement dit : l’ensemble des solutions de y′′ + ay′ + by = 0 est {
x ∈ I 7−→ λer1x + µer2x , (λ, µ) ∈ R2}.

T2 Si ∆ = 0, alors l’équation r2 + ar + b = 0 admet une solution r0 et :(
f est solution de y′′ + ay′ + by = 0)

⇐⇒
(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = (λx + µ)er0x)

Autrement dit : l’ensemble des solutions de y′′ + ay′ + by = 0 est {
x ∈ I 7−→ (λx + µ)er0x , (λ, µ) ∈ R2}.

⋆ Démonstration :
T1. Supposons ∆ > 0 et notons r1 et r2 les deux solutions distinctes de r2 + ar + b = 0.Il s’agit de démontrer une équivalence. Raisonnons par double implication.

⇐ Supposons qu’il existe λ, µ ∈ R, que l’on considère ensuite, tels que : ∀x ∈ I, f (x) = λer1x + µer2x .La fonction f est de classe C 2 sur I et, pour tout x ∈ I :
f ′′(a) + af ′(x) + bf (x) = λr21er1x + µr22er2x + a

(
λr1er1x + µr2er2x) + b

(
λer1x + µer2x)

= λer1x (r21 + ar1 + b) + µer2x (r22 + ar2 + b)
r1 et r2 sont solutions de r2 + ar + b = 0= 0

Ainsi f est solution de y′′ + ay′ + by = 0.
⇒ Soit f une solution de y′′ + ay′ + by = 0. Montrons : ∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x .Transformons le résultat à établir... On a :

∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x ⇐⇒ ∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x)e−r1x = λ + µe(r2−r1)x
Posons alors la fonction g : x 7−→ f (x)e−r1x .La fonction f est de classe C 2 sur I , car elle est solution de y′′ + ay′ + by = 0, donc la fonction g estégalement de classe C 2 sur I et, pour tout x ∈ I :

g′(x) = f ′(x)e−r1x − r1f (x)e−r1x
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= e−r1x(f ′(x)− r1f (x))
puis :

g′′(x) = −r1e−r1x(f ′(x)− r1f (x)) + e−r1x(f ′′(x)− r1f ′(x))= e−r1x(f ′′(x)− 2r1f ′(x) + r21 f (x))
f est solution de y′′ + ay′ + by = 0= e−r1x(− af ′(x)− bf (x)− 2r1f ′(x) + r21 f (x))= e−r1x((−a − 2r1)f ′(x) + (r21 − b)f (x))
r1 + r2 = −a et r1r2 = b= e−r1x((r2 − r1)f ′(x)− r1(r2 − r1)f (x))= (r2 − r1)e−r1x(f ′(x)− r1f (x)) calcul ci-dessus= (r2 − r1)g′(x)

Si x2 − Sx + p = 0 admetdeux solutions (distinctes ou non)notées x1 et x2 , alors x1 + x2 = Set x1x2 = P (car on a alors
x2 − Sx + p = (x − x1)(x − x2)...).

☞ Rappel...

Par conséquent, la fonction g′ est solution de l’équation y′− (r2−r1)y = 0, qui est une équation différentiellelinéaire d’ordre 1 à coefficients constants. Il existe donc α ∈ R, que l’on considère ensuite, tel que :
∀x ∈ I, g′(x) = αe(r2−r1)x

Et donc, puisque r2−r1 ̸= 0 (car r1 ̸= r2) et que I est un intervalle, il existe λ ∈ R, que l’on considère ensuite,tel que pour tout x ∈ I : Le fait que I soit un intervalle estnécessaire... Si h′ = 0 sur ℜ, alorsil existe deux constantes C1 et C2telles que h = C1 sur ] −∞; 0[ et
h = C2 sur ]0; +∞[...

Important !

g(x) = λ + α
r2 − r1 e(r2−r1)x

En posant µ = α
r2 − r1 , on obtient :

∀x ∈ I, g(x) = λ + µe(r2−r1)x
Autrement dit :

∀x ∈ I, f (x) = λer1x + µer2x

Conclusion :
(
f est solution de y′′ + ay′ + by = 0)

⇐⇒
(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = λer1x + µer2x).

T2. Supposons ∆ = 0 et notons r0 l’unique solution de r2 + ar + b = 0. Raisonnons par double implication.
⇐ Sans difficulté, en utilisant le fait que r20 + ar0 = b = 0...
⇒ On raisonne de la même façon que pour T1 ; en posant cette fois g : x 7−→ f (x)e−r0x .La fonction g est de classe C 2 sur I et, de la même façon que précédemment, on obtient, pour tout x ∈ I : Les calculs de g′(x) et de g′′(x)du cas précédent sont encorevalables : ils ne nécessitaient pasque r1 ̸= r2 .

Remarque

g′′(x) = 0
Puisque I est un intervalle, il existe donc un réel λ tel que pour tout x ∈ I , g′(x) = λ. Et donc :

∃(λ, µ) ∈ R2 / ∀x ∈ I, g(x) = λx + µ

Autrement dit :
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = (λx + µ)er0x

Conclusion :
(
f est solution de y′′ + ay′ + by = 0)

⇐⇒
(
∃(λ, µ) ∈ R2 / ∀x ∈ I, f (x) = (λx + µ)er0x).

⋆

Exemples 4

E1 L’équation y′′−y′−6y = 0 est une équation différentielle linéaire d’ordre 2 homogène à coefficients constantsdont l’équation caractéristique est r2 − r − 6 = 0. Les solutions de r2 − r − 6 = 0 sont −2 et 3.
Conclusion : l’ensemble des solutions de y′′ − y′ − 6y = 0 est {x 7−→ λe−2x + µe3x , (λ, µ) ∈ R2}.
E2 L’équation y′′+2y′+y = 0 est une équation différentielle linéaire d’ordre 2 homogène à coefficients constantsdont l’équation caractéristique est r2 + 2r + 1 = 0. L’unique solution de r2 + 2r + 1 = 0 est −1.
Conclusion : l’ensemble des solutions de y′′ + 2y′ + y = 0 est {x 7−→ λ(λx + µ)e−x , (λ, µ) ∈ R2}.
E3 On considère l’équation différentielle y′′ + 2y′ + y = 1, d’inconnue y ∈ C 2(R, R).Cette équation est une équation différentielle linéaire d’ordre 2 à coefficients constants.
• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de l’équation différentielle y′′ + 2y′ + y = 0 est {

x 7−→ (λx + µ)e−x , (λ, µ) ∈ R2}.
• Solution particulière.On remarque que la fonction x 7−→ 1 est une solution particulière de y′′ + 2y′ + y = 1.

Conclusion : l’ensemble des solutions de y′′ + 2y′ + y = 1 est {
x 7−→ 1 + (λx + µ)e−x , (λ, µ) ∈ R2}.

E4 Résolvons l’équation différentielle y′′ − 4y = 4x + 1, d’inconnue y ∈ C 2(R, R).Cette équation est une équation différentielle linéaire d’ordre 2 à coefficients constants.
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• Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de l’équation différentielle y′′ − 4y = 0 est {
x 7−→ λe2x + µe−2x , (λ, µ) ∈ R2}.

• Solution particulière.Remarquons que :
✱ la fonction x 7−→ −14 est solution particulière de y′′ − 4y = 1.

✱ la fonction x 7−→ −x est solution particulière de y′′ − 4y = 4x .
Par principe de superposition, la fonction x 7−→ −14 − x est solution particulière de y′′ − 4y = 4x + 1.

Conclusion : l’ensemble des solutions de y′′ − 4y = 4x + 1 est {
x 7−→ −14 − x + λe2x + µe−2x , (λ, µ) ∈ R2}.

♣ Méthode 3 ♣ Pour déterminer une solution particulière de y′′ + ay′ + by = c :
• soit on en trouve une évidente (en appliquant éventuellement le principe de superposition pour décomposer larecherche) ; en particulier, si c est constante, la fonction constante x 7−→ c

b (quand b ̸= 0) convient ;
• soit on se laisse guider par l’énoncé...

III.2 Problème de Cauchy sur EDL2D’après ce qui précède, nous pouvons affirmer que l’équation (E ) : y′′ + ay′ + by = c admet une infinité de solutions...En revanche, le théorème suivant permet, grâce à une contrainte supplémentaire, d’obtenir l’unicité d’une solution.
Théorème 4 de Cauchy sur EDL2

Si a et b sont des réels réel et c une fonction continue sur I , alors pour tous x0 ∈ I et y0, z0 ∈ R, le problème{
y′′ + ay′ + by = c
y(x0) = y0 ; y′(x0) = z0 , d’inconnue y ∈ C 2(I, R), possède une et une seule solution.

⋆ Démonstration : Celui-ci, on l’admet ! ⋆

Un tel problème est appelé pro-
blème de Cauchy et les condi-tions y(x0) = y0 et y′(x0) = z0 ensont les conditions initiales.

Vocabulaire

♣ Méthode 4 ♣ Pour résoudre un problème de Cauchy :
• on résout l’équation différentielle linéaire d’ordre 2 donnée,
• on utilise les conditions initiales données pour déterminer les valeurs des constantes λ et µ dans la forme généraledes solutions.

Exemple 5

Résolvons le problème de Cauchy suivant : {
y′′ + y′ − 2y = 1− 2x
y(0) = y′(0) = 0 d’inconnue y ∈ C 2(R, R).

• Résolution de y′′ + y′ − 2y = 1 − 2x .Cette équation est une équation différentielle linéaire d’ordre 2 à coefficients constants.

✱ Résolution de l’équation différentielle homogène associée.L’ensemble des solutions de y′′ + y′ − 2y = 0 est {
x 7−→ λex + µe−2x , (λ, µ) ∈ R2}.

✱ Solution particulière.Remarquons que la fonction x 7−→ x est solution particulière de y′′ + y′ − 2y = 1− 2x .
Conclusion : l’ensemble des solutions de y′′ + y′ − 2y = 1− 2x est {

x 7−→ x + λex + µe−2x , (λ, µ) ∈ R2}.
• Le problème donné est un problème de Cauchy, qui admet donc une unique solution, notée f .D’après ce qui précède, il existe λ, µ ∈ R, que l’on considère ensuite, tels que :

∀x ∈ R, f (x) = x + λex + µe−2x

Ne pas hésiter à commencer parcalculer, pour tout x ∈ R, f ′(x)avant de donner f ′(0)...
RemarqueOr f (0) = f ′(0) = 0, d’où :

λ + µ = 0 ; 1 + λ − 2µ = 0Mais : {
λ + µ = 0

λ − 2µ = −1 ⇐⇒ ... ⇐⇒

λ = −13
µ = 13

Conclusion : l’unique solution du problème de Cauchy est la fonction f : x 7−→ x − 13ex + 13e−2x .
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IV Généralités sur les systèmes différentiels
IV.1 Premières définitions

Définitions 5 Systèmes différentiels, solution

D1 Soient n ∈ N∗ , (ai,j )(i,j)∈J1;nK2 ∈ Rn2 et b1, ..., bn des fonctions définies et continues sur I .
Les réels ai,j sont les coefficientsdu système différentiel.

VocabulaireOn appelle système différentiel linéaire à coefficients constants de taille n tout système de la forme :
x ′1 = a1,1x1 + a1,2x2 + ... + a1,nxn + b1
x ′2 = a2,1x1 + a2,2x2 + ... + a2,nxn + b2...
x ′n = an,1x1 + an,2x2 + ... + an,nxn + bn

Il s’agit d’égalités de fonctions !✘ Attention !

où x1, ..., xn ∈ C 1(I, R) sont les fonctions inconnues.En notant :
A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n... ... ...
an,1 an,2 . . . an,n

 ; X =


x1
x2...
xn

 ; X ′ =


x ′1
x ′2...
x ′n

 ; B =


b1
b2...
bn



En fait, X ′ n’est pas qu’une nota-tion... Si l’on définissait une normesur Mn,1(R) (ce n’est pas ce quimanque), on pourrait donner unedéfinition de dérivabilité pour lesfonctions X : I → Rn .

☞ Pour info...

le système différentiel peut se réécrire :
X ′ = AX + B

A est une matrice carrée de réels,
X , X ′ et B sont des fonctions de
I dans Mn,1(R), et X ′ = AX + Best une égalité de fonctions !

✘ Attention !

D2 Un système différentiel linéaire homogène à coefficients constants est un système linéaire de la forme
X ′ = AX , où A ∈Mn(R) et X : I → Mn,1(R) dont les composantes sont des fonctions C 1 sur I inconnues. Le programme d’ECG ne sembleporter que sur les systèmes dif-férentiels linéaires homogènes àcoefficients constants, mais nousdonnerons quelques résultats gé-néraux tout de même...

Remarque

D3 Une solution du système différentiel X ′ = AX + B est une application Y : I → Mn,1(R) telle que :
✓ chaque composante est une fonction de classe C 1 sur I ,
✓ ∀t ∈ I, Y ′(t) = AY (t) + B(t).Résoudre un système différentiel, c’est trouver toutes ses solutions.

Exemple 6Réécrivons l’équation différentielle y′′ + ay′ + by = 0 sous forme de système différentiel.Posons X = (
y
y′

) et X ′ = (
y′
y′′

). On a :
X ′ = (

y′
y′′

)
= (

y′
−ay′ − by

)
= ( 0 1
−b −a

) (
y
y′

)
en notant A = ( 0 1

−b −a

)
= AX

Remarquons alors que :
y′′ + ay′ + by = 0 ⇐⇒ X ′ = AX

Dans toute la suite, on considère une matrice A de Mn(R).

Théorème 5 de Cauchy sur système différentiel

Avec les notations précédentes, pour tout t0 ∈ I et tout X0 ∈Mn,1(R), le problème {
X ′ = AX + B
X (t0) = X0 d’inconnue

X ∈ C 1(I,Mn,1(R)) possède une et une seule solution.
⋆ Démonstration : Théorème admis. ⋆

Un tel problème est appelé pro-
blème de Cauchy, et on avait unrésultat analogue dans le cas desEDL1 et EDL2.

Vocabulaire

Exemple 7Montrons que si Y est une solution non nulle de X ′ = AX sur I , alors Y ne s’annule pas sur I .Supposons que Y est une solution non nulle de X ′ = AX . Raisonnons par l’absurde et supposons que Y s’annuleen un réel t0 ∈ I .
Chapitre 15 - Page 9/18



Par conséquent, Y vérifie le problème de Cauchy suivant :{
X ′ = AX
X (t0) = 0n,1Mais, l’application t 7−→ 0n,1 vérifie également ce problème de Cauchy.Par théorème de Cauchy-Lipschitz, on sait qu’un tel problème admet une unique solution. Par conséquent, Y estnulle : contradiction !

Conclusion : si Y est une solution non nulle de X ′ = AX sur I , alors Y ne s’annule pas sur I .
IV.2 Structure de l’ensemble des solutions
Comme dans le cas des équations différentielles linéaires, on retrouve :

On obtient : dim(SH ) = n.Conséquence :

Comme dans le cas des EDL,cette structure nous guide sur laméthode de résolution des SDL.
Remarque

Propriétés 3 Structure de l’ensemble des solutions d’un SDL

Soient (E ) : X ′ = AX +B un système différentiel linéaire de taille n et (EH ) : X ′ = AX son système différentiellinéaire homogène associé. Notons SE l’ensemble des solutions de E , SH l’ensemble des solutions de (EH ).
P1 SH est un espace vectoriel
P2 Pour tout t0 ∈ I , l’application f : SH −→ Mn,1(R)

X 7−→ X (t0) est un isomorphisme.
P3 Toute solution de (E ) est obtenue en ajoutant à une solution particulière de (E ) une solution quelconquede (EH ). Autrement dit :

solution généraledu SDL = solution particulièredu SDL + solution générale duSDL homogène associé
Ou encore, en notant Xp une solution particulière de (E ) :

SE = {
Xp + XH / XH ∈ SH

}
⋆ Démonstration :

P1. ✓ SH ⊂ C 1(I,Mn,1(R)), qui est un espace vectoriel...
✓ SH est non vide, car l’application t 7−→ 0n,1 est solution de X ′ = AX .
✓ Soient X, Y ∈ SH et λ, µ ∈ R. Montrons que λX + µY ∈ SH .

✱ Puisque X et Y sont solution du système différentiel (E ), les composantes de X et Y sont des applications
C 1 sur I . Par conséquent, les composantes de λX + µY également.

✱ Puis, par linéarité de la dérivation :
(λX + µY )′ = λX ′ + µY ′

X, Y ∈ SH= λAX + µAY= A(λX + µY )
Ainsi λX + µY ∈ SH .

Conclusion : SH est un sous-espace vectoriel de C 1(I,Mn,1(R)), donc c’est un espace vectoriel.
P2. Soit t0 ∈ I .

• Linéarité. Soient λ, µ ∈ R et X, Y ∈ SH .On a :
f (λX + µY ) = (λX + µY )(t0) linéarité de l’évaluation en t0 pour chacune des composantes...= λX (t0) + µY (t0)= λf (X ) + µf (Y )

Conclusion : f est une application linéaire.
• Bijectivité. Montrons :

∀X0 ∈Mn,1(R), ∃!X ∈ SH / f (X ) = X0Cela équivaut à établir :
∀X0 ∈Mn,1(R), ∃!X ∈ C 1(I,Mn,1(R)) /

{
X ′ = AX
X (t0) = X0Ce résultat est vrai, d’après le théorème de Cauchy-Lipschitz.

Conclusion : f est bijective.
Conclusion : f est un isomorphisme. En particulier : dim(SH ) = dim (

Mn,1(R)) = n.
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P3. Soit Xp une solution particulière de (E ). Soit X ∈ C 1(I,Mn,1(R)). On a :
X ∈ SE ⇐⇒ X ′ = AX + B

X ′p = AXp + B, car Xp est solution de (E )⇐⇒ X ′ − X ′p = AX + B − AXp + B) linéarité de la dérivation⇐⇒ (X − Xp)′ = A(X − Xp)
⇐⇒ X − Xp ∈ SH

⇐⇒ ∃XH ∈ SH / X − Xp = XH

⇐⇒ ∃XH ∈ SH / X = Xp + XH

Conclusion : SE = {
Xp + XH / XH ∈ SH

}.
⋆

Propriété 4 Principe de superposition

Soient A ∈Mn(R) ainsi que B1, B2 ∈ C
(
I,Mn,1(R)).Si X1 est une solution de X ′ = AX + B1 et X2 est une solution de X ′ = AX + B2 , alors pour tous λ1, λ2 ∈ R,

λ1X1 + λ2X2 est une solution de X ′ = AX + (λ1B1 + λ2B2).
⋆ Démonstration : Soient X1 une solution particulière de X ′ = AX+B1 et X2 une solution particulière de X ′ = AX+B2 .Soient λ1, λ2 ∈ R.Puisque X1 et X2 sont solutions respectives de X ′ = AX +B1 et X ′ = AX +B2 , leurs composantes sont des applicationsde classe C 1 sur I , et donc celles de λ1X1 + λ2X2 également. Puis, par linéarité de la dérivation :(λ1X1 + λ2X2)′ = λ1X ′1 + λ2X ′2

X1 est solution de X ′ = AX + B1 et X2 de X ′ = AX + B2= λ1AX1 + λ1B1 + λ2AX2 + λ2B2= A(λ1X1 + λ2X2) + λ1B1 + λ2B2
Conclusion : λ1X1 + λ2X2 est solution de X ′ = AX + (λ1B1 + λ2B2). ⋆

IV.3 Équilibres et trajectoires
Définition 6 Équilibre d’un SDL

Un équilibre d’un système différentiel est une solution constante de ce système. La fonction t 7−→ 0n,1 est unéquilibre de tous les systèmesdifférentiels homogènes.
À retenir...

Supposons que le système X ′ = AX + B possède un équilibre noté X0 . Dans ce cas : ∀t ∈ I, X ′0(t) = 0, et on obtientalors :
AX0 = −BNécessairement :

• B est constante,
• B ∈ Im(A).

Intéressons-nous plus particulièrement aux équilibres des systèmes différentiels linéaires homogènes à coefficientsconstants.

Si A est inversible, alors la fonc-tion t 7−→ 0n,1 est le seul équi-libre de X ′ = AX .
À retenir...

Propriété 5 Caractérisation des équilibres des systèmes homogènes

Soit Y0 ∈Mn,1(R).La fonction t 7−→ Y0 est un équilibre de X ′ = AX si, et seulement si Y0 ∈ ker(A).
⋆ Démonstration : Notons Y : t 7−→ Y0 définie sur R. Chaque composante de Y étant constante, elle est C 1 sur R.On a ensuite, puisqu’on sait déjà que Y est constante :(

Y est un équilibre de X ′ = AX
)
⇐⇒ ∀t ∈ R, Y ′(t) = AY (t)

Y est constante, donc : ∀t ∈ R, Y ′(t) = 0⇐⇒ ∀t ∈ R, 0 = AY (t)
Y est constante égale à Y0⇐⇒ AY0 = 0

⇐⇒ Y0 ∈ ker(A)
⋆

♣ Méthode 5 ♣ Pour déterminer les équilibres du système X ′ = AX :
• on détermine ker(A),
• on conclut avec les bons objets : les équilibres sont des applications de I dans Mn,1(R), pas des matrices de
Mn,1(R).
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Exemple 8

Déterminons les équilibres du système différentiel : (E ) :
 x ′ = x + y + z

y′ = x + z
z′ = 2x + y + 2z

Soit X = x
y
z

 ∈Mn,1(R). Notons A = 1 1 11 0 12 1 2
. On a :

X ∈ ker(A) ⇐⇒


x + y + z = 0
x + z = 02x + y + 2z = 0

⇐⇒
L2 ← L2 − L1
L3 ← L3 − 2L1


x + y + z = 0
− y = 0
− y = 0

⇐⇒


x = −z
y = 0
z = z

⇐⇒ X = −z0
z



Conclusion : l’ensemble des équilibres de (E ) est
t 7−→ λ

−101
 , λ ∈ R

.

Définition 7 Trajectoire d’un SDL

Une trajectoire de X ′ = AX est un ensemble {(
x1(t), ..., xn(t)), t ∈ R

}, où


x1
x2...
xn

 est une solution de X ′ = AX . Une trajectoire associée à unéquilibre est réduite à un point de
Rn .

Remarque

Propriété 6

Si deux trajectoires de X ′ = AX ont un point commun, alors elles sont confondues.Autrement dit, deux trajectoires de X ′ = AX sont soit distinctes, soit confondues.
⋆ Démonstration : Soient {(

x1(t), ..., xn(t)), t ∈ R} et {(
y1(t), ..., yn(t)), t ∈ R} deux trajectoires associées respec-tivement aux solutions X et Y du système différentiel Z ′ = AZ .Supposons que ces deux trajectoires ont un point commun ; autrement dit, supposons qu’il existe t0 ∈ R tel que(

x1(t0), ..., xn(t0)) = (
y1(t0), ..., yn(t0)).Ainsi, en notant Z0 ce point commun, X et Y sont deux solutions du problème de Cauchy suivant :{

Z ′ = AZ
Z (t0) = Z0Or, par théorème de Cauchy, ce problème ne possède qu’une unique solution. Par conséquent :

∀t ∈ R, X (t) = Y (t)Et donc leurs trajectoires sont égales.
Conclusion : si deux trajectoires ont un point commun, alors elles sont égales. ⋆

Définitions 8 Trajectoire convergente, divergente

Soit
x1...

xn

 une solution de X ′ = AX .
D1 La trajectoire {(

x1(t), ..., xn(t)) / t ∈ R
} est convergente lorsqu’il existe (ℓ1, ..., ℓn) ∈ Rn tel que :

∀i ∈ J1; nK, lim
t→+∞ xi(t) = ℓi .On dit alors que la trajectoire {(

x1(t), ..., xn(t)) / t ∈ R
} converge vers (ℓ1, ..., ℓn).
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D2 La trajectoire {(
x1(t), ..., xn(t)) / t ∈ R

} est divergente lorsqu’elle n’est pas convergente.
Pour montrer qu’une trajectoireest divergente, il suffit d’établirqu’une de ses composantes tendvers ±∞...
♣ Méthode !

Exemple 9

Voyons comment résoudre le système différentiel
 x ′ = y + z

y′ = x + z
z′ = x + y

.
• Justifions que la matrice A = 0 1 11 0 11 1 0

 est diagonalisable.
La matrice A est symétrique à coefficients réels, elle est donc diagonalisable.

• Déterminons les valeurs propres de A ainsi qu’une base de chaque sous-espace propre associé.Notons, pour tout λ ∈ Sp(A), Eλ(A) l’espace propre de A associé à la valeur propre λ. Eλ(A) = ker(A − λIn).☞ Rappel...

✱ Remarquons que A

111
 = 2 111

. Puisque 111
 ̸= 03,1 , on en déduit que 2 est valeur propre de A et

que 111
 en est un vecteur propre associé et ainsi Par définition, si λ est VP de A,alors Eλ(A) est un ev non réduitau vecteur nul ; donc c’est un evde dimension au moins 1.

☞ Rappel...

dim (
E2(A)) ⩾ 1

Mais :
rg(A − 2I3) = rg −2 1 11 −2 11 1 −2


C1 et C2 ne sont pas colinéaires

⩾ 2
Et donc, par théorème du rang : dim (

E2(A)) ⩽ 1On en déduit : dim (
E2(A)) = 1

Et ainsi, la famille 111
 est une famille de E2(A) qui est :

✓ libre car constituée d’un unique vecteur non nul,
✓ de cardinal 1, égal à dim (

E2(A)).
Conclusion : la famille 111

 est une base de E2(A).

✱ Ensuite : Remarquer l’égalité C1 + 0C2 −
C3 = 03,1 nous permet de mettreen évidence un vecteur du noyaude la matrice A − I3 ...En effet, si C1, C2, C3 sont lescolonnes d’une matrice B, on a :
B

x
y
z

 = xC1 + yC2 + zC3 ,
donc : x

y
z

 ∈ ker(B) ⇐⇒
xC1 + yC2 + zC3 = 0...

♥ Astuce du chef ♥

rg(A + I3) = rg 1 1 11 1 11 1 1


C1 = C2 et C1 = C3

= rg 111
 111

 ̸= 03,1= 1
Par conséquent, −1 est valeur propre de A et, par théorème du rang :

dim (
E−1(A)) = 2

Puis, on remarque que  1
−10

 ,

 10
−1

 ∈ E−1(A). Voir l’astuce ci-dessus...Pourquoi ?

La famille  1
−10

 ,

 10
−1

 est donc une famille de E−1(A) qui est :
✓ libre car seulement constituée de deux vecteurs non colinéaires,
✓ de cardinal 2, égal à dim (

E−1(A)).
Par conséquent, la famille  1

−10
 ,

 10
−1

 est une base de E−1(A).
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• Soient λ ∈ Sp(A) et V un vecteur propre de A associé à λ. Montrons que l’application Y : t 7−→ eλtV estsolution de X ′ = AX .
Notons V = v1

v2
v3

. Ainsi, pour tout t ∈ R :
Y (t) = eλtv1eλtv2eλtv3


Les composantes de Y sont toutes des fonctions de classe C 1 sur R et, pour tout t ∈ R :

Y ′(t) = λeλtv1
λeλtv2
λeλtv3


= λeλtV

V est vecteur propre de A associé à la valeur propre λ= eλtAV= AY (t)
Conclusion : l’application Y : t 7−→ eλtV est solution de X ′ = AX .

• Déduisons-en l’ensemble des solutions de X ′ = AX .Notons S l’ensemble des solutions du système différentiel X ′ = AX .On sait que S est un espace vectoriel de dimension 3 (car A ∈M3(R)).
Notons V1 = 111

 , V2 =  1
−10

 , V3 =  10
−1

 ainsi que Y1 : t 7−→ e2tV1 , Y2 : t 7−→ e−tV2 et
Y3 : t 7−→ e−tV3 .

✱ D’après le point précédent, on sait que les applications Y1, Y2, Y3 sont solutions de X ′ = AX .

✱ Montrons que la famille (Y1, Y2, Y3) est une famille libre de S .Soient a, b, c ∈ R. Supposons aY1 + bY2 + cY3 = 0. Il s’agit d’une égalité d’applica-tions (définies sur R et à valeursdans M3,1(R)...).
✘ Attention !

Autrement dit, supposons : ∀t ∈ R, aY1(t) + bY2(t) + cY3(t) = 03,1 . En prenant t = 0, on obtient :
aV1 + bV2 + cV3 = 03,1Or la famille (V1, V2, V3) est une famille libre de M3,1(R), car c’est la concaténation de familles libresde vecteurs propres associées à des valeurs propres distinctes.D’où :

a = b = c = 0Et ainsi, la famille (Y1, Y2, Y3) est libre.Par conséquent, la famille (Y1, Y2, Y3) est une famille de S qui est :
✓ libre d’après ce qui précède,
✓ de cardinal 3 égal à dim(S).

Conclusion : la famille (Y1, Y2, Y3) est une base de S et donc :
S = Vect(Y1, Y2, Y3)= {

t 7−→ aY1(t) + bY2(t) + cY3(t), (a, b, c) ∈ R3}
= {

t 7−→ ae2tV1 + be−tV2 + ce−tV3, (a, b, c) ∈ R3}
• Donnons finalement une trajectoire convergente non constante et une trajectoire divergente de X ′ = AX .

✱ Posons Z1 : t 7−→ e2tV1 + e−tV2 + e−tV3 .D’après ce qui précède, Z1 est solution de X ′ = AX et, pour tout t ∈ R :
Z1(t) = e2t + e−te2t − e−te2t


Puisque lim

t→+∞ e2t = +∞, la trajectoire associée à Z1 est divergente.

Il y en a une infinité quiconviennent : toutes les so-lutions de la forme t 7−→
ae2tV1 + be−tV2 + ce−tV3 avec
a ̸= 0 sont associées à des trajec-toires divergentes.

Remarque

✱ Posons Z2 : t 7−→ e−tV1 .D’après ce qui précède, Z2 est solution de X ′ = AX et, pour tout t ∈ R :
Z2(t) =  e−t

−e−t0


Puisque lim
t→+∞ e−t = 0 et que lim

t→+∞−e−t = 0, la trajectoire associée à Z2 est convergente (elle convergevers (0, 0, 0).).

Il y en a une infinité quiconviennent : toutes les so-lutions de la forme t 7−→
ae2tV1 + be−tV2 + ce−tV3 avec
a = 0 sont associées à des trajec-toires convergentes.

Remarque
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V Cas où A est diagonalisable
• Dans le cas où A est diagona-lisable, l’énoncé pourra ne donneraucune étape intermédiaire dansla résolution de X ′ = AX . Ilfaudra alors mettre en œuvre laméthode de l’exemple 5 (et la se-conde méthode de démonstrationdu théorème 2).
• Dans le cas où A n’est pasdiagonalisable, l’énoncé guidera.

Important !L’objectif est de résoudre le système différentiel X ′ = AX dans le cas où A est une matrice diagonalisable. Nous allonsdonner l’ensemble des solutions et voir deux démonstrations du résultat, dont la première utilise le lemme 1 ci-dessous.
Lemme 1 (HP)

Soient A ∈Mn(R), λ ∈ Sp(A) et V un vecteur propre de A associé à λ.La fonction t 7−→ eλtV est solution de X ′ = AX sur R.
⋆ Démonstration : Notons Y : t 7−→ eλtV . Puisque V est constant, chaque composante de Y est une fonction C 1 sur

R et, pour tout t ∈ R : On peut s’imaginer la tête de Ysinon, pour se rendre compte del’expression de Y ′(t)...
Remarque

Y ′(t) = λeλtV= eλtλV
V est vecteur propre de A associé à λ= eλtAV= A ×

(eλtV
)

= AY (t)
La fonction t 7−→ eλtV est donc solution de X ′ = AX sur R. ⋆

Puisque A est diagonalisable, ilexiste bien une base de Mn,1(R)constituée de vecteurs propresde A.
Important !

Théorème 6 Résolution de X ′ = AX , cas où A est diagonalisable (HP)

Soit A ∈Mn(R) une matrice diagonalisable.Notons :
• λ1, ..., λn les valeurs propres de A (non nécessairement distinctes),
• (V1, ..., Vn) une base deMn,1(R) constituée de vecteurs propres de A telle que, pour tout i ∈ J1; nK, Vi estvecteur propre de A associé à la valeur propre λi .On a ainsi : (

X est solution de X ′ = AX
)
⇐⇒

(
∃(c1, ..., cn) ∈ Rn / ∀t ∈ R, X (t) = n∑

i=1 cieλitVi
)

Autrement dit, l’ensemble des solutions de X ′ = AX est {
t 7−→ c1eλ1tV1 + ... + cneλntVn, (c1, ..., cn) ∈ Rn}.

⋆ Démonstration : Voyons deux démonstrations de ce résultat. Notons S l’ensemble des solutions du système diffé-rentiel X ′ = AX .
1. On sait déjà que S est un espace vectoriel de dimension n (conséquences de Propriétés 3 - P2). Notons, pour tout

i ∈ J1; nK, Yi : t 7−→ eλiti Vi .
• D’après le lemme précédent, pour tout i ∈ J1; nK, Yi est solution de X ′ = AX .
• Montrons que la famille (Y1, ..., Yn) est une famille libre de S .Soient a1, ..., an ∈ R. Supposons a1Y1 + ... + anYn = 0. Il s’agit d’une égalité d’applica-tions (définies sur R et à valeursdans Mn,1(R)...).

✘ Attention !Autrement dit, supposons :
∀t ∈ R, a1Y1(t) + ... + anYn(t) = 0n,1On a donc :
∀t ∈ R, a1eλ1tV1 + ... + aneλntVn = 0n,1En particulier, pour t = 0, on obtient :

a1V1 + ... + anVn = 0n,1Or, la famille (V1, ..., Vn) est libre (car c’est une base de Mn,1(R)). D’où :
a1 = ... = an = 0

Et ainsi, la famille (Y1, ..., Yn) est libre.Par conséquent, la famille (Y1, ..., Yn) est une famille de S qui est :
✓ libre d’après ce qui précède,
✓ de cardinal n, égal à dim(S).

Conclusion : la famille (Y1, ..., Yn) est une base de S et donc :
S = Vect(Y1, ..., Yn)= {

t 7−→ c1Y1(t) + ... + cnYn(t), (c1, ..., cn) ∈ Rn}
= {

t 7−→ c1eλ1tV1 + ... + cneλntVn, (c1, ..., cn) ∈ Rn}
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2. Posons P la matrice dont les colonnes sont V1, ..., Vn et D = diag(λ1, ..., λn). La matrice P est inversible, car c’est lamatrice de passage de la base canonique de Mn,1(R) vers la base (V1, ..., Vn), et, puisque A est diagonalisable, ona :
A = PDP−1

Soit X ∈ C 1(R,Mn,1(R)). Posons Z = P−1X et notons Z =
z1...

zn

. z1, ..., zn sont des fonctions !✘ Attention !Puisque chaque composante de X est C 1 et
que P−1 est constante, chaque composante de Z est C 1 et, pour tout t ∈ R :

Z ′(t) = P−1X ′(t)Ainsi :
X ′ = AX ⇐⇒ X ′ = PDP−1X

Z = P−1X et X ′ = PZ ′⇐⇒ PZ ′ = PDZ
P est inversible⇐⇒ Z ′ = DZ
D = diag(λ1, ..., λn)⇐⇒ ∀i ∈ J1; nK, z′i = λizi

⇐⇒ ∀i ∈ J1; nK, ∃ci ∈ R / ∀t ∈ R, zi(t) = cieλit

⇐⇒ ∃(c1, ..., cn) ∈ Rn / ∀t ∈ R, Z (t) =
c1eλ1t...

cneλnt


⇐⇒ ∃(c1, ..., cn) ∈ Rn / ∀t ∈ R, X (t) = P

c1eλ1t...
cneλnt


P = (V1 · · · Vn)

⇐⇒ ∃(c1, ..., cn) ∈ Rn / ∀t ∈ R, X (t) = c1eλ1tV1 + ... + cneλntVn

Il est inutile de calculer P−1 pourrésoudre le système différentielpar cette méthode.
Remarque

⋆

Ce théorème est hors programme, en revanche, les deux démonstrations fournissent deux méthodes classiques pourrésoudre des systèmes différentiels. Mettons en application la seconde méthode sur l’exemple suivant : La première méthode serait gui-dée. En revanche, pour la se-conde, une fois la matrice A dia-gonalisée, elle est à savoir faireen autonomie.

♣ Méthode !

Exemple 10

Résolvons le système différentiel (E ) : {
x ′ = 2x − y
y′ = 3x + 6y d’inconnues x, y ∈ C 1(R, R). Il est tout à fait possible, à l’écritcomme à l’oral, que la résolutiond’un système différentiel ne soitpas guidée...

• A l’écrit, on guiderait en re-vanche la réduction de la matrice
A, pour orienter vers cette mé-thode.
• A l’oral, le jury peut attendreune prise d’initiative complète.

Important !

Notons A = (2 −13 6 ).
• Sans difficulté, on trouve que la matrice A est diagonalisable et, en posant P = ( 1 1

−1 −3) et D = (3 00 5),la matrice P est inversible et :
A = PDP−1

• Soient x, y ∈ C 1(R, R). Notons X = (
x
y

) ainsi que Z = P−1X .Puisque x et y sont C 1 sur R et que P−1 est constante, les composantes de Z sont C 1 sur R et, pour tout
t ∈ R :

Z ′(t) = P−1X ′(t)Ainsi :{
x ′ = 2x − y
y′ = 3x + 6y ⇐⇒ X ′ = AX

⇐⇒ X ′ = PDP−1X
Z = P−1X et X ′ = PZ ′⇐⇒ PZ ′ = PDZ
P est inversible⇐⇒ Z ′ = DZ en notant Z = (

z1
z2

)
⇐⇒

{
z′1 = 3z1
z′2 = 5z2

⇐⇒ ∃(c1, c2) ∈ R2 / ∀t ∈ R,
{

z1(t) = c1e3t

z2(t) = c2e5t

⇐⇒ ∃(c1, c2) ∈ R2 / ∀t ∈ R, Z (t) = (
c1e3t

c2e5t

)
⇐⇒ ∃(c1, c2) ∈ R2 / ∀t ∈ R, X (t) = P

(
c1e3t

c2e5t

)
⇐⇒ ∃(c1, c2) ∈ R2 / ∀t ∈ R, X (t) = (

c1e3t + c2e5t

−c1e3t − 3c2e5t

)
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⇐⇒ ∃(c1, c2) ∈ R2 / ∀t ∈ R,
{

x(t) = c1e3t + c2e5t

y(t) = −c1e3t − 3c2e5t

Conclusion : l’ensemble des solutions de (E ) est {
t 7−→

(
c1e3t + c2e5t

−c1e3t − 3c2e5t

)
, (c1, c2) ∈ R2}.

Et si la matrice A n’est pas diagonalisable, mais seulement semblable à une matrice triangulaire ?Dans ce cas, au moins une des équations différentielles sur les zi aura un second membre non constant...Ce n’est pas nécessairement problématique !
Pour terminer, voici une conséquence du théorème précédent qui fournit un résultat sur le comportement des trajectoiresquand t → +∞ :

Une trajectoire est un sous-ensemble de de Rn et un équi-libre est un élément de Mn,1(R)(ou plus précisément une ap-plication constante de R dans
Mn,1(R), assimilée à un élémentde Mn,1(R))... On comprend bienl’idée tout de même !

Confusion d’objets !

Théorème 7 Comportement des trajectoires, cas où A est diagonalisable

Soit A ∈Mn(R) une matrice diagonalisable.
T1 Si A possède au moins une valeur propre strictement positive, alors X ′ = AX possède des trajectoiresdivergentes.
T2 Si les valeurs propres de A sont négatives ou nulles, alors toutes les trajectoires de X ′ = AX convergentvers un équilibre (pas nécessairement le même).
T3 Si les valeurs propres de A sont strictement négatives, alors toutes les trajectoires de X ′ = AX convergentvers (0, ..., 0), seul équilibre du système différentiel.

⋆ Démonstration : Notons :
• λ1, ..., λn les valeurs propres de A (non nécessairement distinctes),
• (V1, ..., Vn) une base de Mn,1(R) constituée de vecteurs propres de A (licite, car A est diagonalisable) telle que,pour tout i ∈ J1; nK, Vi est vecteur propre de A associé à la valeur propre λi ,
• pour tout k ∈ J1; nK, xk la k-ième composante de X (où X est une solution de X ′ = AX ) et, pour tout i ∈ J1; nK,

vi,k la k-ième composante de Vi .
T1. Supposons que A possède au moins une valeur propre strictement positive. Quitte à échanger les valeurs propres,supposons que λ1 > 0.D’après le lemme 1, la fonction t 7−→ eλ1tV1 est solution de X ′ = AX sur R.Or :

• λ1 > 0, donc par produit et composition : lim
t→+∞ eλ1t = +∞

• V1 est vecteur propre de A, donc V1 est non nul. Il existe donc k ∈ J1; nK, que nous considérons ensuite, telque la k-ième composante de V1 soit non nulle.Par produit, on obtient : lim
t→+∞ eλ1tv1,k = ±∞

Par conséquent : la trajectoire associée à t 7−→ eλ1tV1 est divergente.
T2. Supposons que les valeurs propres de A sont négatives ou nulles. Quitte à échanger les valeurs propres, supposons :

∀i ∈ J1; pK, λi = 0 ; ∀i ∈ Jp + 1; nK, λi < 0 Les cas où 0 est seule VP et où0 n’est pas VP sont inclus (enconsidérant p = n et p = 0respectivement).Dans le cas où p = 0, chaque
somme p∑

i=1 (...) sera nulle, par
convention.

Remarque

Soit X une solution de X ′ = AX . D’après le théorème 6, il existe des réels c1, ..., cn tels que :
∀t ∈ R, X (t) = n∑

i=1 cieλitVi

Or :
• Pour tout i ∈ Jp + 1; nK, λi < 0. D’où, par produit et composition :

∀i ∈ Jp + 1; nK, lim
t→+∞ eλit = 0

D’où :
∀k ∈ J1; nK, ∀i ∈ Jp + 1; nK, lim

t→+∞ cieλitvi,k = 0
• Pour tout i ∈ J1; pK, λi = 0. D’où :

∀i ∈ J1; pK, ∀t ∈ R, cieλitVi = ciViEt ainsi :
∀k ∈ J1; nK, ∀i ∈ J1; pK, lim

t→+∞ cieλitvi,k = civi,k
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On obtient finalement par somme :
∀k ∈ J1; nK, lim

t→+∞ xk (t) = p∑
i=1 civi,k

Par conséquent : la trajectoire associée à X converge vers p∑
i=1 ciVi .

Notons V = p∑
i=1 ciVi et montrons que V est un équilibre de X ′ = AX .

On sait que, pour tout i ∈ J1; pK, Vi est vecteur propre de A associé à la valeur propre 0.Donc : ∀i ∈ J1; pK, Vi ∈ ker(A). Mais ker(A) est un espace vectoriel, il est donc stable par combinaison linéaire.Ainsi :
V ∈ ker(A)D’après la propriété 5, on en déduit que la fonction t 7−→ V est un équilibre de X ′ = AX .

Conclusion : toutes les trajectoires de X ′ = AX convergent vers un équilibre.
T3. Cas particulier de la démonstration précédente, dans le cas où p = 0...On obtient :

∀k ∈ J1; nK, lim
t→+∞ xk (t) = 0

Par conséquent : la trajectoire associée à X converge vers (0, ..., 0).Bien évidemment, t 7−→ 0n,1 est un équilibre de X ′ = AX . Et c’est le seul ! En effet, les valeurs propres de A sontstrictement négatives, donc 0 n’est pas valeur propre de A. Ainsi, ker(A) = {0n,1}. Et donc, d’après la propriété 5,
t 7−→ 0n,1 est le seul équilibre de X ′ = AX .

⋆
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