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ANALYSE

FQUATIONS DIFFERENTIELLES ET SYSTEMES DIFFERENTIELS

INTRODUCTION...

Les équations différentielles sont apparues au XVII®™ siécle, alors que Newton et Leibniz (entre autres) mettent en place les théories de dérivation et
d'intégration; tout en s'intéressant de prés aux phénomenes d'évolutions physiques et en particulier a la mécanique.

Ce n'est qu'a partir du XVIIIEme siécle que la résolution de ces équations a été possible, grace notamment aux travaux d'Euler. De nombreux
mathématiciens (D'Alembert, Cauchy, Lipschitz, Lagrange...) ont ensuite ceuvré a développer la théorie des équations différentielles.

Nous allons nous intéresser a un cas bien particulier d'équations différentielles; mais il faut savoir qu'il n'existe pas de méthode systématique pour
résoudre de fagon exacte toutes les équations différentielles. Pour cette raison, une branche entiére des mathématiques - 'analyse numérique - développe
des méthodes et algorithmes performants qui permettent la résolution approchée de ces équations tres utiles dans de nombreux domaines (mécanique,
électricité, économie, chimie..).
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Dans tout le chapitre, / désigne un intervalle non vide de R.

[.1

GENERALITES SUR LES EQUATIONS DIFFERENTIELLES

PREMIERES DEFINITIONS

EQUATION DIFFI:ZRENTIELLE, SOLUTION, TRAJECTOIRE, éQUILIBRE

DEFINITIONS 1

On appelle équation différentielle toute équation reliant une fonction y (suffisamment réquliere) et une
ou plusieurs de ses dérivées.

Soient n € N* et ag, ay,...,a,, b des fonctions définies et continues sur /, telles que a, n'est pas la
fonction nulle.
On appelle équation différentielle linéaire d'ordre n une équation de la forme :

any" + a, 1y + a1y +aoy=b

ol y € €"(/,R) est la fonction inconnue.

Par convention, la fonction y et ses dérivées sont toutes sur le méme membre de l'équation; et le reste
est sur l'autre membre. Dans le cas ol ce second membre est la fonction nulle, on dira que l'équation
différentielle est homogéne.

Une solution d'une équation différentielle est une fonction suffisamment réquliere sur l'intervalle donné
vérifiant l'égalité de fonctions. Résoudre 'équation différentielle, c'est trouver toutes ses solutions.

Une trajectoire d'une équation différentielle est la courbe d'une solution de cette équation différentielle.

Un équilibre d'une équation différentielle est une solution constante de cette équation différentielle.

| EXEMPLES 1 I

Léquation y” x ¢’ + 3y*> = g, oll y € F*(R,R) et g : x — e* + x* — 1, est une équation différentielle. Une
solution f de cette équation différentielle est une fonction de classe € sur R telle que :

Vx €R, '(x) x f'(x) + 3f(x)* = e + x* — 1
Pour éviter de nommer le membre de droite, on écrira l'équation différentielle ainsi :

g//xy/+3y2:ex+x2_«|

Sont des équations différentielles linéaires :

y4+2y=2x"; y' =3y +2y=0 ;

Ne sont pas des équations différentielles linéaires :

lj')giz(); i:x y'y =e*
y

L'équation (E) : ¢’ —2xy = 2x* — 1, ol y € €'(R,R), est une équation différentielle linéaire d'ordre 1; et
(En) - y"— 2xy = 0 est son équation différentielle homogeéne associée.

e Montrons que pour tout A € R, la fonction f, : x — 2’ est solution de (En).
Soit A € R.
La fonction f; est de classe € sur R et, pour tout x € R :
f1(x) = 2xF,(x) = 2xAe" — 2xAe*
=0

Conclusion : pour tout A € R, la fonction f; : x — Ae* est solution de (Ep).

e Cherchons une solution de (E) qui soit dans Ry[x] On la notera f,,.
Soit f € Ry[x]. Il existe alors a, b € R, que l'on considére ensuite, tels que pour tout x € R, f(x) = ax + b
Ona:

2xf = 2x* —1

f/(x) — 2xf(x) = 2x* — 1

a—2x(ax + b) = 2x* —1

(/ est solution de (b)) = [
— VxeR,
— Vx € R,
— Vx € R, —2ax* —2bx+a = —1
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Remarque

Souvent, f est la lettre désignant
une fonction étudiée. Pour éviter
toute ambiguité, on notera y la
fonction inconnue d'une équation
différentielle.

Vocabulaire
Les fonctions ag, a1, ..., a, sont
les coefficients de l'équation
différentielle.

X Attention | ——
ﬁs'aglt d'une égalité de fonc-
t

tons !

Remarque

Si l'intervalle / n'est pas précisé,
on considérera par défaut qu'il
s'agit de R.

— Confusion d’objets | —

Il faut bien étre conscient que
clest un abus de notation : le
membre de gauche est une fonc-
tion, alors que le membre de
droite est un réel, et x n'est méme
pas quantifié ! Bref, c'est un peu
une abomination ce truc.. sans
doute une écriture due a des phy-
siciens ou des économistes...

o

En fait...

Une équation différentielle est
linéaire lorsque le membre de
gauche est une expression li-
néaire en y...

Vocabulaire ———
+7On a ainst trouvé une solution

particuliére de (E).




Conclusion : l'unique solution de (E) qui soit dans Ry[x] est la fonction f

DX —X.

2 LA LINEARITE, C'EST LE PIED!

PROPRIETES 1 STRUCTURE DE L'ENSEMBLE DES SOLUTIONS D'UNE EDL

Soient (E) une équation différentielle linéaire et (Ey) son équation différentielle linéaire homogene associée.
Notons Sg l'ensemble des solutions de £, Sy l'ensemble des solutions de (Ep).

Sy est un espace vectoriel.

E Toute solution de (E) est obtenue en ajoutant a une solution particuliere de (E) une solution quelconque
de (Ep). Autrement dit :

solution générale _—  solution particuliére + solution générale de
de 'EDL de 'EDL ['équation homogene associée

Ou encore, en notant f, une solution particuliére de £ :

SE={fp+fH/fHESH}

*
DEmoNsTRATION : Voir Question classique 43 pour le cas particulier d'une EDLT a coefficients constants. La méthode
s'adapte dans le cas général. N

PROPRIETE 2 PRINCIPE DE SUPERPOSITION

Soient ag, ay, ..., a, ainsi que by et b, des fonctions continues sur /.
On considere les équations différentielles suivantes :

(E):apy™ +an iy Vo Fagy=by et (E):ay™ +a,_1y" TV + L+ avy’ + agy = by

St f; est une solution particuliére de (Ey) et f, une solution particuliere de (E5), alors pour tous Ay, A, € R, la
fonction Ay fy + Ayf, est solution particuliere de

a,,y(”) + anfqy(”’” + ...+ a1y/ + apy = by + Aoby

FDEMONSTRATION : Soient f; une solution particuliere de (E4) et f, une solution particuliére de (E;). Soient également
M, A €R.

Puisque f; et f, sont des solutions respectives de (£;) et (E3), elles sont de classe € sur /, et donc Af; 4 uf, également.
Puis, par linéarité de la dérivation, on a :

n n
S aubhfi+ b9 =S ag (L + )
k=0 k=0 J linéarité de la somme
=)\1 ka(k)+)tz ka(k)
kZ=O ! kZ=0 : J f1 est solution de (Eq) et f, de (E2)
=X\ b1 + )\zbz
Conclusion : la fonction A1f; + Axf> est solution de a,,g(”) +a,y"™ T+ L+ ary’ + agy = AMby + Axba. j

EXEMPLE 2

Une solution particuliere de ¢y’ + y = 1 est la fonction /1 x —— 1
Une solution particuliére de ¢’ + y = x est la fonction /1 : x—— x — 1.

Conclusion : par principe de superposition, une solution particuliere de ¢y’ + y = 3 + 2x est la fonction

fpix— 2x4+1.

Ciblons maintenant sur l'essentiel : les équations différentielles linéaires d'ordres 1 et 2 & coefficients constants.
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Important !

Cette structure de l'ensemble des
solutions est importante et nous
quide sur la méthode a mettre en
ceuvre pour résoudre une EDL...



https://jeremylegendre.fr/wp-content/uploads/Questions-classiques.pdf

II' EDL DU PREMIER ORDRE A COEFFICIENTS CONSTANTS

DEFINITION 2 EDL41 A COEFFICIENTS CONSTANTS

Soient agp et ay des réels tels que a1 # 0 et b une fonction définie et continue sur /.
On appelle équation différentielle linéaire d'ordre 1 & coefficients constants une équation de la forme :
ary +agy=>b
ol y € €'(I,R) est la fonction inconnue.
Puisque a; # 0, on a, pour tout y € €'(/,R) :
Vocabulaire
’ ’ ao b . , L,
a1y’ + agy = h — y+—y=— On dit alors qu'on a normalisé
an an 'équation différentielle.

Dans la suite, nous ne considérerons que des EDL1 normalisées de la forme : ¢’ + ay = b
(a € R, b une fonction continue sur /).
St 'EDL1T n'est pas normalisée, on commencera toujours par le faire..

.1 REésoLutioN D'UNE EDL

Dans la premiere partie, nous avons vu le résultat :

solution générale —  solution particuliere _|_ solution générale de
de 'EDL de 'EDL 'équation homogeéne associée

['idéal serait maintenant de voir comment :

e résoudre l'équation différentielle homogéne ¢’ + ay =0,

e trouver une solution particuliere de y' + ay = b..

THEOREME 1 REsoLuTioN DE ¢y’ + ay =0
Remarque
Soit a € R. o g .
. , Cax n retrouve la structure d'espace
(f est solution de y + ay = 0) — (El)\ €ER, Vx e /, f(X) = Je ) vectoriel de l'ensemble des solu-

tions de ¢’ + ay = 0. Onen a

Autrement dit : lensemble des solutions de y' 4+ ay = 0 est {X El— Ae™™, X e R}4 méme une base : (x+— e

70)().

*
DEMONSTRATION : Il s'agit de démontrer une équivalence. Raisonnons par double implication.

Supposons qu'il existe A € R, que nous considérons ensuite, tel que : Vx € /, f(x) = Ae™®".

: ! o ; 1 v Rigueur !
* La fonction x — —ax est affine donc €' sur I. Par conséquent, f est ¢ sur /. p ) ,
Une solution de y" + ay = 0 est
* Pour tout x € [ : une fonction f qui vérifie :
o fest € surl,
f'(x) 4+ af(x) = —ate™™ + ate™ o +af =0
=0

Ainst f est solution de y" + ay = 0.

Soit f une solution de ¢y’ + ay = 0. Montrons : 3A
Transformons le résultat a établir.. On a :

m

R/Vx €l f(x)=Ae .

JNER|VXEL f(x) =Ae ™™ <= FASR/Vx el f(x)e™ =1

Posons alors la fonction g : x — f(x)e™ et montrons qu'elle est constante sur /.
La fonction f est €' sur /, car elle est solution de ¢’ 4+ ay = 0, donc la fonction g est €' sur /, comme produit

de telles fonctions et, pour tout x € / :

f'(x)e™ + f(x)ae®
= e (f'(x) + af(x))

g'(x)

/ f est solution de y’ + ay =0

Par conséquent, la fonction g est dérivable et de dérivée nulle sur un intervalle, cette fonction est donc constante

Question :
Une fonction dérivable et de
dérivée nulle sur R* est-elle
constante sur R*?

sur /. Il existe donc un réel A tel que pour tout x € /, g(x) = A. Autrement dit :

Conclusion : (f est solution de " + ay = 0) = (3/\‘ eER, Vx e, f(x)=Ale ”‘) J
*
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| ExXempLES 3 I

L'équation y"+ 2y = 0 est une équation différentielle linéaire d'ordre 1 homogéne a coefficients constants dont
l'ensemble des solutions est {x — e, A e R}.

On considére 'équation différentielle ' — 3y = 6, d'inconnue y € €' (R, R).

Cette équation est une équation différentielle linéaire d'ordre 1 a coefficients constants.

e Résolution de l'équation différentielle homogéne associée.
Lensemble des solutions de y’ — 3y = 0 est {x — Ae™, A € R}.

e Solution particuliére.
On remarque que la fonction x — —2 est une solution particuliere de (E).

Conclusion : l'ensemble des solutions l'équation différentielle y’ — 3y = 6 est {x — =24 X e R}A

E Résolvons l'équation différentielle y’ 4 y = x 4 1, d'inconnue y € €' (R, R).
Cette équation est une équation différentielle linéaire d'ordre 1 a coefficients constants.

e Résolution de l'équation différentielle homogéne associée.
Lensemble des solutions de y’ + y = 0 est {x —> Ae™*, A € R},

e Solution particuliére.
On remarque que la fonction x —— x est une solution particuliere de (E).

X

Conclusion : l'ensemble des solutions l'équation différentielle y" + y = x + 1 est {x —x+AreTY, A e R}.

& METHODE 1 @ Pour déterminer une solution particuliére de ¢y’ + ay = b :
e soit on en trouve une évidente (en appliquant éventuellement le principe de superposition pour décomposer la

recherche); en particulier, si b est constante, la fonction constante x — — convient;
a

e soit on se laisse guider par l'énoncé..

> ProsLEME DE CAUCHY SUR EDL~

D'aprés ce qui précéde, nous pouvons affirmer que 'équation (E) : y' + ay = b admet une infinité de solutions.. En
revanche, le théoréme suivant permet, grace a une contrainte supplémentaire, d'obtenir l'unicité d'une solution.

THEOREME 2 DE CAuCHY surR EDL1

y +ay=>b
y(xo) = yo

i

St a est un réel et b une fonction continue sur /, alors pour tous xo € / et yo € R, le probleme {

d'inconnue y € ‘51(/, R), posséde une et une seule solution.

*
DEMONSTRATION : En exercice. *

Ce théoreme permet alors de dire que si deux trajectoires d'une EDL1 ont un point commun, alors elles sont identiques.
Ou bien, par contraposée : deux trajectoires différentes d'une EDLT ne se croisent jamais.
Ou encore : deux trajectoires d'une EDL1 sont soit identiques, soit d'intersection vide.

& METHODE 2 & Pour résoudre un probléme de Cauchy :
e on résout l'équation différentielle linéaire d'ordre 1 donnée,

e on utilise la condition initiale donnée pour déterminer la valeur de la constante A dans la forme générale des
solutions.

Il EDL DU SECOND ORDRE A COEFFICIENTS CONSTANTS

DEFINITION 3 EDL2 A COEFFICIENTS CONSTANTS

Soient ag, ay, a, des réels tels que a; # 0 et b une fonction définie et continue sur /.
On appelle équation différentielle linéaire du second ordre a coefficients constants une équation de la forme :

ay” + ary’ +agy =b

oli y € €%(I,R) est la fonction inconnue.

CHAPITRE 15 - Page 5/18

Remarque

ILn'y a pas de méthode générale
pour déterminer une solution
particuliére... Une idée a avoir en
téte : la chercher "sous la méme
forme" que le second membre.

Vocabulaire
Un tel probléme est appelé pro-
bléme de Cauchy et la condition
y(x0) = yo en est la condition
initiale.

En effet :
St deux trajectoires ont un point
commun, en (xg, Yo), alors les
deux solutions associées vérifient
le méme probleme de Cauchy...




Puisque a, # 0, on a, pour tout y € €°(/,R) :

‘équation différentielle.

a a b Vocabulaire
@y’ +ay +ay=b — '+ (TWy/ + CTOy = %n dit alors qu'on a normalisé
2 2 2

Dans la suite, nous ne considérerons que des EDL2 normalisées de la forme : y” + ay’ + by = ¢
(@, b € R, c une fonction continue sur /).
St U'EDL2 n'est pas normalisée, on commencera toujours par le faire...

[l.1 RésoLuTtioN D'UNE EDL2

Dans la premiére partie, nous avons vu le résultat :

solution générale —  solution particuliere _|_ solution générale de
de 'EDL de 'EDL 'équation homogene associée

['idéal serait donc maintenant de voir comment :
e résoudre l'équation différentielle homogéne y” + ay’ + by = 0,

e trouver une solution particuliére de y” + ay’ + by = c..

Pour l'équation homogéne, commencons par une petite définition, qui n'est pas sans nous rappeler quelques souvenirs...

DEFINITION 4 EQUATION CARACTERISTIQUE

Soient a,b € R.
L'équation r* + ar + b = 0, d'inconnue r € R, est appelée équation caractéristique de l'équation différentielle
y"+ay' + by =0.

THEOREME 3 REsoLuTioN DE y” + ay’ + by = 0

Soient @, b € R et A le discriminant associé a l'équation caractéristique r* + ar + b = 0. — Remarque

On retrouve la structure d'espace
vectoriel de l'ensemble des solu-
tions de y” + ay’ + by = 0. On

St A > 0, alors l'équation > + ar + b = 0 admet deux solutions distinctes ry et rp et :

(f est solution de y” + ay’ + by =0) <= (3(A ) ER* | Vx €1, f(x) = A" + pe') en _aAmémg une base :
esiA>0:
Autrement dit : Uensemble des solutions de y” + ay’ + by = 0 est {x € [ — e + pe’?*, (A, y) € R*}. (x> e, x— e2¥)

esiA=0:
Si A =0, alors l'équation r* + ar 4+ b = 0 admet une solution ry et :

(X — xe'0¥ x — e'OX)

(f est solution de y” + ay’ + by =0) <= (3(Ap) ER? | Vx €1, f(x) = (Ax + p)e™")

Autrement dit : lensemble des solutions de y” + ay’ + by = 0 est {x € I —> (Ax + p)e®, (A, u) € R°}.

*
DEMONSTRATION :

T1. Supposons A > 0 et notons ry et ry les deux solutions distinctes de r? + ar + b = 0.
Il s'agit de démontrer une équivalence. Raisonnons par double implication.

Supposons qu'il existe A,y € R, que l'on considére ensuite, tels que : Vx € [, f(x) = Ae"™ + pe'?*.
La fonction f est de classe €7 sur [ et, pour tout x € [ :

f"(a) + af'(x) + bf(x) = Arje"™ + prie™ + a(Are™ + pre) + b(re" + pe'?")

= Ae"™(r{ + ary + b) + pe?(rs + ar, + b)

0 J ry et ry sont solutions de r2 +ar+b =0

Ainst f est solution de y” + ay’ + by = 0.
Soit f une solution de y” 4+ ay’ + by = 0. Montrons : 3(A, ) € R? | ¥x € I, f(x) = e + pe"*.
Transformons le résultat a établir.. On a :

A ) €ER* [Vx €1, f(x) =A™ + e &= F(Ap) €R? [Vx €1, f(x)e ™ = A4 pel2 1K

Posons alors la fonction g : x — f(x)e™ """
La fonction f est de classe € sur /, car elle est solution de y” + ay’ + by = 0, donc la fonction g est
également de classe € sur / et, pour tout x € /
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=e "(f'(x) = nf(x))

puis :
gII(X) _ 7/‘197”)(({/()() - f( )) + e—qx(f//(x) - f,(X)) "33' RaPPel...
Six? — Sx +p = 0 admet
— e 11X f’/( ) —2nf (X) + I’1 f(x )) deux solutions (distinctes ou non)

J f est solution de y” + ay’+ by =0 notées x; et xp, alors x; + xo = S
et x1x; = P (car on a alors

—af'(x) = bf(x) = 2 '(x) + ri f(x))

(
( 2
= e ((—a — 2r)(x) + (72 — B)I(x) X = Sx+p=(x—x)x—x).)
— e ((ry = m)F(x) = (2 — ) F(x) J = et =b

o —r)e (' (x) — rif(x
’ 1) ( ( ) ! ( )) J calcul ci-dessus

Par conséquent, la fonction ¢ est solution de l'équation y’ — (r» — r1)y = 0, qui est une équation différentielle
linéaire d'ordre 1 a coefficients constants. Il existe donc a € R, que l'on considére ensuite, tel que :

) — gal—rx
Vxel, g'(x) = ae Important !

Et donc, puisque r; —ry # 0 (car ry # r3) et que / est un intervalle, il existe A € R, que l'on considére ensuite, | Le fait que / soit un intervalle est

) /- nécessaire.. St h" = 0 sur R, alors
tel que pour tout x & / : il existe deux constantes Cy et
a

— (ra—rq)x telles que h = Gy sur | —o0; 0] et
gx) = A+ r27r1e h = G sur [0; +09]...

En posant y = , on obtient :

—n
Vx €1, g(x) = A+ pel2=
Autrement dit :
Vx €1, f(x) = re™ + pe
Conclusion : (f est solution de y” + ay’ + by =0) <= (3(A,u) ER* | Vx € 1, f(x) = te"™ + pe'?").
T2. Supposons A = 0 et notons ry L'unique solution de r* + ar + b = 0. Raisonnons par double implication.

< | Sans difficulté, en utilisant le fait que e+ arp=b=0..
q 0
= | On raisonne de la méme facon que pour T1; en posant cette fois g : x — f(x)e 0"
Gon que p p

Remarque
Les calculs de ¢(x) et de ¢g”(x)

La fonction g est de classe € sur / et, de la méme facon que précédemment, on obtient, pour tout x € / : du cas précédent sont encore
valables : ils ne nécessitaient pas
” _ ue r =+ rp.
g'(x)=0 e s

Puisque / est un intervalle, il existe donc un réel A tel que pour tout x € /, g'(x) = A Et donc :
JAp) ER VX EL gix) = Mx+up

Autrement dit :
I ) €R? VX €L, f(x) = (Ax 4 p)e

Conclusion : (f est solution de y” + ay’ + by =0) <= (A y) €R* | Vx €1, f(x) = (Ax + p)e").

EXempPLES 4

L'équation y” —y’ — 6y = 0 est une équation différentielle linéaire d'ordre 2 homogéne a coefficients constants

]

dont l'équation caractéristique est r> — r — 6 = 0. Les solutions de r> — r —6 = 0 sont —2 et 3.

| Conclusion : l'ensemble des solutions de y” — y’ — 6y = 0 est {x+—— Je ™" + e’ (4 ) € R} |

L'équation y” +2y"+y = 0 est une équation différentielle linéaire d'ordre 2 homogéne a coefficients constants
dont l'équation caractéristique est r> 4+ 2r +1 = 0. Lunique solution de r? +2r +1 =0 est —1.

|Concluslon : lensemble des solutions de y” + 2y’ +y = 0 est {x = (Ax + ple ", (4, 1) € R7}. |

On consideére 'équation différentielle y” + 2y’ + y = 1, d'inconnue y € F*(R, R).
Cette équation est une équation différentielle linéaire d'ordre 2 a coefficients constants.

e Résolution de l'équation différentielle homogéne associée.
Lensemble des solutions de l‘équation différentielle y” + 2y + y = 0 est {x — (Ax + pe™, (A, u) € R*}.

e Solution particuliére.
On remarque que la fonction x — 1 est une solution particuliére de y” + 2y’ +y = 1.

Conclusion : lensemble des solutions de y” + 2y’ +y = 1 est {x — 1+ (Ax + p)e ™, (4, ) € R’}

Résolvons l'équation différentielle y” — 4y = 4x + 1, d'inconnue y € €*(R, R).

Cette équation est une équation différentielle linéaire d'ordre 2 a coefficients constants.
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e Résolution de l'équation différentielle homogéne associée.
L'ensemble des solutions de l'équation différentielle y” — 4y = 0 est {X —s Ae® e (A ) € R)}.

e Solution particuliére.
Remarquons que :

1 )
* la fonction x — T est solution particuliere de y” — 4y = 1.

# la fonction x — —x est solution particuliere de y” — 4y = 4x.

-1 P
Par principe de superposition, la fonction x — X est solution particuliere de y” —4y = 4x + 1.

)

" 1 . "o )
Conclusion : l'ensemble des solutions de y” — 4y = 4x + 1 est {x — g X +Ae” 4 pem, (A p) € R‘}.

& METHODE 3 @ Pour déterminer une solution particuliére de y” + ay’ + by = ¢ :

e soit on en trouve une évidente (en appliquant éventuellement le principe de superposition pour décomposer la

recherche); en particulier, st ¢ est constante, la fonction constante x — 5 (quand b = 0) convient;

e soit on se laisse guider par 'énoncé...

Il ProsLEME DE CAucHY SsurR EDL2

D'aprés ce qui précéde, nous pouvons affirmer que Uéquation (E) : y” + ay’ + by = ¢ admet une infinité de solutions...
En revanche, le théoréme suivant permet, grace a une contrainte supplémentaire, d'obtenir l'unicité d'une solution.

THEOREME 4 DE CAUCHY SUR EDL2

St a et b sont des réels réel et ¢ une fonction continue sur /, alors pour tous xop € / et yo, 2o € R, le probleme

"+ ay + b Vocabulaire

a =cC r . . | ;

y yrhys , d'inconnue y € €*(/, R), posséde une et une seule solution. Un tel probleme est appelé pro-
ylxo) = yo : Y'(x) =20 bléme de Cauchy et les condi-

tions y(x0) = yo et y'(xo) = 2o en
sont les conditions initiales.

*
DEmoNsTRATION : Celui-ci, on l'admet! N

& METHODE 4 & Pour résoudre un probléme de Cauchy :
e on résout l'équation différentielle linéaire d'ordre 2 donnée,

e on utilise les conditions initiales données pour déterminer les valeurs des constantes A et ¢ dans la forme générale
des solutions.

| EXEMPLE 5 I

Résolvons le probleme de Cauchy suivant : {

4 /
y Yy » 2y =1-2 d'inconnue y € €*(R, R).
y(0) = y'(0) =0
e Résolution de y”" +y" —2y =1 —2x.
Cette équation est une équation différentielle linéaire d'ordre 2 a coefficients constants.
* Résolution de l'équation différentielle homogéne associée.
L'ensemble des solutions de y” + y" — 2y = 0 est {X s Ae* e, (A ) € Rl}.
* Solution particuliére.
Remarquons que la fonction x — x est solution particuliere de y” + ¢" — 2y = 1 — 2x.
Conclusion : lensemble des solutions de y” + y' — 2y = 1—2x est {x — x + Ae" + pe™*, (4, p) € R’}
e Le probleme donné est un probleme de Cauchy, qui admet donc une unique solution, notée f.
D'apres ce qui précede, il existe A,y € R, que l'on consideére ensuite, tels que :

Vx €R, f(x) = x + Ae* + pe &

Or f(0) = f'(0) = 0, d'ot : Remarque
Ad+pu=0: 1+21=2u=0 Ne pas hésiter a commencer par
' calculer, pour tout x € R, f(x)
Mais : avant de donner f'(0)...
‘ 1
A+u=0 A= —
o — ... T)
A—=2p=—1 _ !
H=3
3

. 1 1T,
Conclusion : l'unique solution du probleme de Cauchy est la fonction f : x —— x — ge'\ + e

D
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V' GENERALITES SUR LES SYSTEMES DIFFERENTIELS

V4 PREMIERES DEFINITIONS

DEFINITIONS 5 SYSTEMES DIFFERENTIELS, SOLUTION

Soient n € N*, (@) jeqrap2 € R" et by, ..., b, des fonctions définies et continues sur /.

Vocabulaire
On appelle systeme différentiel linéaire a coefficients constants de taille n tout systeme de la forme : ﬂes réels a sont les coefficients

du systeme différentiel.

Xp = auxa + a2+ .+ dixe + by
/
XZ = az xq -+ az2x2 + -+ az nXn -+ bz x Attention !
ﬁ s'agit d'égalités de fonctions !
X = dyx1 + Gy 4+ ..+ dpnxe + b,

ol Xq, ..., X, € <ﬁ(/, R) sont les fonctions inconnues. ,
En fait, X’ n'est pas qu'une nota-

En notant : tion... St l'on définissait une norme
, b sur M, 1(R) (ce n'est pas ce qui
R B B X1 X 1 manque), on pourrait donner une
azg a, ... dyp X2 Xé bz définition de dérivabilité pour les
A= ] ] ] X = ) X = ) . B= ) fonctions X : | — R".
’
apy ap?2 ce dpn Xn X bn
X Attention !
le systeme différentiel peut se réécrire : A est une matrice carrée de réels,
/ X, X" et B sont des fonctions de
X =AX+B  dans M, 1(R), et X' = AX + B
est une égalité de fonctions !
Un systéme différentiel linéaire homogéne a coefficients constants est un systeme linéaire de la forme Remarque

Le programme d'ECG ne semble
porter que sur les systémes dif-

X' = AX, ol A€ M,(R) et X : | — M,1(R) dont les composantes sont des fonctions " sur / inconnues.

. . Cees X L férentiels linéaires homogénes a

Une solution du systéeme différentiel X = AX + B est une application Y : / — M, 1(R) telle que : coefficients constants, magls nous
i donnerons quelques résultats gé-

v chaque composante est une fonction de classe €' sur /, néraux toutqde iéme_" J

v Ytel Y(t)=AY(t)+ B().

Résoudre un systeme différentiel, c'est trouver toutes ses solutions.

| EXEMPLE 6 I

Réécrivons l'équation différentielle y” + ay’ + by = 0 sous forme de systéme différentiel.
Posons X = ( U,) et X' = (U,,). Ona:
y y

y
[j//
_ y’
—ay' — by
A

b o) V]
—b —a y J en notant A = ( Oh 'Wn)

X

X —

Remarquons alors que :
y'+ay +by=0 & X' =AX

Dans toute la suite, on considére une matrice A de M ,(R).

THEOREME 5 DE CAUCHY SUR SYSTEME DIFFERENTIEL
. . . X =AX+B . .
Avec les notations précédentes, pour tout ty € / et tout Xog € M, 1(R), le probleme «[ % X d'inconnue Vocabulaire
(to) = Xo Un tel probleme est appelé pro-
X € €'(I, M,,1(R)) posséde une et une seule solution. bléme de Cauchy, et on avait un
résultat analogue dans le cas des
EDL1T et EDL2.
* 7 7 1 .
DEMONSTRATION : Théoreme admis. .

EXeEmPLE 7

Montrons que st Y est une solution non nulle de X" = AX sur /, alors Y ne s'annule pas sur /.
Supposons que Y est une solution non nulle de X’ = AX. Raisonnons par 'absurde et supposons que Y s'annule

en un réel ty € /.
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Par conséquent, Y vérifie le probleme de Cauchy suivant :

X = AX
X(to) = 0,1

Mais, l'application t — 0,1 vérifie également ce probleme de Cauchy.
Par théoreme de Cauchy-Lipschitz, on sait qu'un tel probleme admet une unique solution. Par conséquent, Y est
nulle : contradiction !

Conclusion : si Y est une solution non nulle de X’ = AX sur /, alors Y ne s'annule pas sur /.

[V.2  STRUCTURE DE L'ENSEMBLE DES SOLUTIONS

Comme dans le cas des équations différentielles linéaires, on retrouve :

PRrOPRIETES 3 STRUCTURE DE L'ENSEMBLE DES SOLUTIONS D'UN SDL

Soient (E) : X" = AX + B un systéme différentiel lindaire de taille n et (£;,) : X’ = AX son systéme différentiel
linéaire homogene associé. Notons Sg l'ensemble des solutions de E, Sy U'ensemble des solutions de (Ep).

Sy est un espace vectoriel

Conséquence :
e fi| Sy — MR . . q —‘
Pour tout ty € /, Uapplication ‘ )H( . X(tO;( ) est un isomorphisme. %n obtient : dim(Sw) = 1.

E Toute solution de (E) est obtenue en ajoutant a une solution particuliere de (E) une solution quelconque
de (Ep). Autrement dit :

g 1 . i Luti inérale d Remarque
solution générale — solution particuliere _|_ solution gen\era e du 5 Comme dans Le cas des EDL
du SDL du SDL SDL homogene assocte cette structure nous guide sur la

méthode de résolution des SDL.

Ou encore, en notant X, une solution particuliere de (E) :

SE:{XP+XH/XHESH}

*
DEMONSTRATION :

P1. v Sy C €' (I, M,1(R)), qui est un espace vectoriel...
v Sy est non vide, car U'application t — 0,1 est solution de X' = AX.
v Soient X, Y € Sy et A,y € R. Montrons que AX + pY € Sy

* Puisque X et Y sont solution du systeme différentiel (£), les composantes de X et Y sont des applications
" sur I. Par conséquent, les composantes de AX + Y également.
* Puis, par linéarité de la dérivation :

(X + V) = AX + Y’
, S,
— JAX + pAY Jxvess
— AUX + 1Y)

Ainst AX + pY € Sy,
Conclusion : Sy est un sous-espace vectoriel de € (1, M,,1(R)), donc cest un espace vectoriel.
P2. Soit th € /.

e Linéarité. Soient A,y € Ret X, Y € Sy.
Ona:

FOX + 1Y) = (AX + 1Y)(to)
= AX(to) + 1Y (o)
— AF(X) + pf(Y)

J linéarité de l'évaluation en ty pour chacune des composantes...

Conclusion : f est une application linéaire.

e Bijectivité. Montrons :
VXo € M,1(R), X € Sy [ 1(X)=Xp

Cela équivaut a établir :

X'=AX

VXO S Mn,'](R)' E”X € (51 (/'Mn’1(R)) / { X(to) = XO

Ce résultat est vrai, d'apres le théoreme de Cauchy-Lipschitz.

Conclusion : f est bijective.

Conclusion : f est un isomorphisme. En particulier : dim(Sy) = dim (M,,1(R)) = n.
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P3. Soit X, une solution particuliere de (E). Soit X € € (/, M,1(R)). On a :
XeESr & X =AX+8B
= X/fX;=AX+BfAXp+B)
= (X=X) =AX=X)
— X-X, &S,
= IXye Sy X=X, =Xy
— 3Ny e Sy X=X, + Xy

) X; = AX, + B, car X, est solution de (E)

J linéarité de la dérivation

Conclusion : S = {Xp + Xy | Xy € SH} J
*

PROPRIETE 4 PRINCIPE DE SUPERPOSITION

Soient A € M, (R) ainsi que By, B, € €(/, M, 1(R)).
St X; est une solution de X' = AX + By et X, est une solution de X' = AX + B,, alors pour tous A, 4, € R,
M X1+ X5 est une solution de X' = AX + (A1 By + 4Bs).

*

rDEMONSTRATION - Soient X; une solution particuliere de X’ = AX+B; et X5 une solution particuliere de X = AX+B,.

Soient A1, A, € R.

Puisque X; et X, sont solutions respectives de X’ = AX + B; et X' = AX + B,, leurs composantes sont des applications

de classe € sur /, et donc celles de A X; + X également. Puis, par linéarité de la dérivation :

(){1 X1 —+ )\2X2)l = )q XW/ + AQXZ/

= MAX] + 4By + LAX, + 4B
= A()\1X1 + /\2X2) =+ )\1 31 —+ )QBZ

Conclusion : 11X; + A,X; est solution de X' = AX + (A1 By + A2 By). j

J X; est solution de X' = AX + By et X; de X' = AX + B,

IV.3  EQUILIBRES ET TRAJECTOIRES

DEFINITION 6 EquiLiBRe D’UN SDL A retenir...
La fonction t —— 0,1 est un
Un équilibre d'un systeme différentiel est une solution constante de ce systeme. equilibre de tous les systemes

différentiels homogenes.

Supposons que le systeme X' = AX 4+ B posséde un équilibre noté Xy. Dans ce cas : Vt € [, Xj(t) = 0, et on obtient
alors :
AXo = —B
Nécessairement :
e B est constante,
o B e lIm(A).

Intéressons-nous plus particulierement aux équilibres des systemes différentiels linéaires homogenes a coefficients
constants.

PROPRIETE 5 CARACTERISATION DES EQUILIBRES DES SYSTEMES HOMOGENES

Soit Yo € M,1(R). A retenir...

La fonction t — Yy est un équilibre de X' = AX si, et seulement si Yy € ker(A). Si A est inversible, alors la fonc-
tion t — 0,1 est le seul équi-
libre de X" = AX.

*
DEMONSTRATION : Notons Y : t — Yq définie sur R. Chaque composante de Y étant constante, elle est ' sur R.
On a ensuite, puisqu'on sait déja que Y est constante :

(Y est un équilibre de X' = AX) <= ViR, Y'(t) = AY(1)
« VteR, 0=AY(t)
== A =0

J Y est constante, donc : Vt € R, Y'(t) =0
J Y est constante égale a Yo

> Yy € ker(A)

]

& METHODE 5 & Pour déterminer les équilibres du systéme X' = AX :
e on détermine ker(A),

e on conclut avec les bons objets : les équilibres sont des applications de / dans M, 1(R), pas des matrices de
M, 1(R).

CHAPITRE 15 - Page 11/18



| EXEMPLE 8 I

X = x 4+ y + z
Déterminons les équilibres du systéme différentiel : (F): {4 ¢y = + =z
7 = 2 + y + 2z
X T 1 1
Soit X = |y | €M,4(R). Notons A=1|1T 0 1].0na:
z 2 1 2
x+y+ z=0
X & ker(A) == X + z=0
2x+y+2z=0
x+y+z=0
= y =0
Ly —1y—14
Ly — L5 — 2L, y =0
X=—z
— y=20
z=1z
z
= X=10
z
—1
Conclusion : l'ensemble des équilibres de (E)est 4 t——A| 0 |, A€R
1

DEFINITION 7 TRAJECTOIRE D'UN SDL

X1

¥ Remarque

2 . o

Une trajectoire de X = AX est un ensemble {(xi(t), ..., x,(t)), t € R}, o | . | est une solution de X = AX. Une trajectoire associ¢e & un

: équilibre est réduite a un point de

R".
Xn

PROPRIETE 6

St deux trajectoires de X’ = AX ont un point commun, alors elles sont confondues.
Autrement dit, deux trajectoires de X’ = AX sont soit distinctes, soit confondues.

*

DEMONSTRATION : Soient {()q(t), .A.,xn(t)), t €R}et {(gq(t), yn(t)), t € R} deux trajectoires associées respec-
tivement aux solutions X et Y du systéme différentiel 7/ = AZ.
Supposons que ces deux trajectoires ont un point commun; autrement dit, supposons qu'il existe ty € R tel que

(X1(t0), A Xn(to)) = (yq(l’g), A yn(to)).
Ainsi, en notant Z, ce point commun, X et Y sont deux solutions du probleme de Cauchy suivant :

{ Z'=AZ
Z(to) = 4

Or, par théoreme de Cauchy, ce probleme ne posséde qu'une unique solution. Par conséquent :
Vt e R, X(t)=Y(t)

Et donc leurs trajectoires sont égales.
Conclusion : si deux trajectoires ont un point commun, alors elles sont égales. .

DEFINITIONS 8 TRAIECTOIRE CONVERGENTE, DIVERGENTE

X1
Soit | : | une solution de X" = AX.

Xn

La trajectoire {(xi(t),...,xs(t)) / t € R} est convergente lorsqu'il existe (¢,...,4,) € R” tel que :
vie [1;n], rllT x(t) = &

On dit alors que la trajectoire {(x1(t), A.A,X,,(t)) | te R} converge vers (¢, ..., 4,).
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& Méthode !

Pour montrer qu'une trajectoire
est divergente, il suffit d'établir
qu'une de ses composantes tend

La trajectoire {(x1(t), X,,(t)) | te R} est divergente lorsquelle n'est pas convergente. vers £00..

| EXEMPLE 9 |

X = y + z
Voyons comment résoudre le systéme différentiel 1 ¢ = x + z.
7 = x + y
0 1 1
e Justifions que la matrice A= |1 0 1| est diagonalisable.
1T 1 0
La matrice A est symétrique a coefficients réels, elle est donc diagonalisable.
e Déterminons les valeurs propres de A ainsi qu'une base de chaque sous-espace propre associé. = Rappel...
Notons, pour tout A € Sp(A), E,(A) lespace propre de A associé a la valeur propre A. &/\(A) — ker(A— Al,).
1 1 1
#* Remarquons que A [ 1] =2|1].Puisque [ 1| # 054, on en déduit que 2 est valeur propre de A et
1 1 1 = Rappel...
1 Par définition, st A est VP de A,
que | 1| en est un vecteur propre associé et ainsi alors £5(A) est un ev non réduit
1 au vecteur nul; donc c'est un ev
de dimension au moins 1.

dim (D(A)) >

Mais :

rg(A—=2hk)=rg | 1 =2 1
1 1 ) J Cy et G ne sont pas colinéaires

=2

Et donc, par théoreme du rang :
dim (FZ(A)) <1

On en déduit :
dim (EZ(A)) =1

Et ainsi, la famille 1 est une famille de E>(A) qui est :

v libre car constituée d'un unique vecteur non nul,
v de cardinal 1, égal a dim (E5(A)).

Conclusion : la famille 1 est une base de E,(A). — ¥ Astuce du chef ¥ —

1 Remarquer légalité¢ C; + 06 —
C; = 031 nous permet de mettre
en évidence un vecteur du noyau
de la matrice A— ...

1 1 En effet, si C;, G, G5 sont les
colonnes d'une matrice B, on a :

* Ensuite :

rg(A+ L) =rg

X
donc: [y | € ker(B) <

)1 <>
<1> # 031 XG4+ yC 426G =0..

1

1

1 . ) X

T 1 1 J(wzﬁgt‘l(\:(s Bly| =xC +yG + 26,
z

1

1

1

=1

Par conséquent, —1 est valeur propre de A et, par théoreme du rang :

dim (F W(A)) =2

Pourquoi ?
Puis, on remarque que | =1 |, | 0 | € E_4(A). Voir lastuce ci-dessus
0 —1 (
1 1
La famille -11,10 est donc une famille de £_(A) qui est :
0 —1

v libre car seulement constituée de deux vecteurs non colinéaires,
v de cardinal 2, égal a dim (E,1(A)).
1 1

Par conséquent, la famille 11,10 est une base de £_1(A).
0 —1
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e Soient A € Sp(A) et V un vecteur propre de A associé a A Montrons que lapplication Y : t — eV est
solution de X’ = AX.

V1
Notons V' = | v, |. Ainsi, pour tout t € R :
V3
ey
Y(t)= | v
I

Les composantes de Y sont toutes des fonctions de classe €' sur R et, pour tout t € R :
rettvy
re'ty,
re’lyy
= eV
= AV
= AY(t)

(o)

J V' est vecteur propre de A associé a la valeur propre A

Conclusion : l'application Y : t — e’V est solution de X’ = AX.

e Déduisons-en l'ensemble des solutions de X" = AX.
Notons S lensemble des solutions du systéme différentiel X" = AX.
On sait que S est un espace vectoriel de dimension 3 (car A € M;3(R)).

1 1 1
Notons V4 = (1], Vb = | =1, Vy = 0 | ainsi que ¥ @t — XV}, Y it — eV, et
1 0 —1

YgIT*HG 3.

* D'aprés le point précédent, on sait que les applications Y;, Y, Y5 sont solutions de X’ = AX.

* Montrons que la famille (Y;, Y5, ¥3) est une famille libre de S.
Soient a, b, c € R. Supposons aY; + bY; + cY; = 0.
Autrement dit, supposons : Vt € R, aY(t) + bY>(t) + ¢ Y5(t) = 054. En prenant t = 0, on obtient :

G\/q +DV1+CV3203‘1

Or la famille (V4, V5, V3) est une famille libre de M5 +(R), car clest la concaténation de familles libres
de vecteurs propres associées a des valeurs propres distinctes.
Dol :
a=b=c=0
Et ainsi, la famille (Y3, Y2, Y3) est libre.
Par conséquent, la famille (Y3, Y2, ¥3) est une famille de S qui est :
v libre d'apres ce qui précede,
v de cardinal 3 éqgal a dim(S).

Conclusion : la famille (Y7, Y5, Y5) est une base de S et donc :

S = \/GCT(Y1, YQ, Yg)
= {t— aYi(t) + bYs(t) + cY5(1), (a,b,c) €R’}
= {t|—> ae’ Vi 4+ be™ 'V, + ce™'V;, (a, b, c) € R}}

e Donnons finalement une trajectoire convergente non constante et une trajectoire divergente de X’ = AX.

% Posons Z; i t — 'V + eV, + eV
D'apres ce qui précéde, Z; est solution de X" = AX et, pour tout t € R :

el 4o
7 (f o 2t t
1(t)=|e e

)
e‘/

. . P N . -7 \ .
Puisque lim e” = +o0, la trajectoire associée a Z; est divergente.

t—+o00
* Posons 2, i t—— eV,
D'apreés ce qui précede, 7, est solution de X = AX et, pour tout t € R :

e
L) = | —e'
0
Puisque lim e™"=0etque lim —e ™' =0, la trajectoire associée & 7/, est convergente (elle converge
t—+00 t—+00

vers (0,0, 0).).
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X Attention !
Il s'agit d'une égalité d'applica-
tions (définies sur R et a valeurs

dans M34(R)..).

Remarque
ILy en a une infinité qui
conviennent : toutes les so-
lutions de la forme t +——
ae”Vy + be 'V, + ce 'V avec
a + 0 sont associées a des trajec-
toires divergentes.

Remarque
ILy en a une infinité qui
conviennent : toutes les so-
lutions de la forme t +——
ae’ Vi + be 'V, + ce 'V avec
a = 0 sont associées a des trajec-
toires convergentes.




V  Cas oU A EST DIAGONALISABLE

L'objectif est de résoudre le systéme différentiel X" = AX dans le cas ol A est une matrice diagonalisable. Nous allons

donner l'ensemble des solutions et voir deux démonstrations du résultat, dont la premiere utilise le lemme 1 ci-dessous. ¢

Soient A € M,(R), A € Sp(A) et V un vecteur propre de A associé a A
La fonction t — e!*V/ est solution de X" = AX sur R.

— Important !

e Dans le cas ol A est diagona-
lisable, l'énoncé pourra ne donner
aucune étape intermédiaire dans
la résolution de X" = AX. Il
faudra alors mettre en ceuvre la
méthode de l'exemple 5 (et la se-
conde méthode de démonstration
du théoreme 2).

e Dans le cas oli A n'est pas
diagonalisable, l'énoncé guidera.

*
DEMONSTRATION : Notons Y : t — e’V Puisque V est constant, chaque composante de Y est une fonction €" sur
R et, pour tout t € R :
Y'(t) = AeMV

Remarque

On peut s'imaginer la téte de YV
sinon, pour se rendre compte de
l'expression de Y'(t)...

=eM\V
= eMAV
=Ax (e"V)
— AY(1)

J V est vecteur propre de A associé a A

La fonction t — e’V est donc solution de X’ = AX sur R.

REsoLuTioN DE X’ = AX, cAs oU A EST DIAGONALISABLE (HP)

THEOREME 6

Soit A € M, (R) une matrice diagonalisable.
Notons :

® Ay, ..., A, les valeurs propres de A (non nécessairement distinctes),

e (V4,...,V,) une base de M, ;(R) constituée de vecteurs propres de A telle que, pour tout i € [1;n], V; est
vecteur propre de A associé a la valeur propre A;.

On a ainsi :

(X est solution de X' = AX) = (H(Q, ., G) ERT[VtER, X(t)= Z c,-e*"\/i)
=1

Autrement dit, l'ensemble des solutions de X = AX est {t — cie’'V; + ..+ c,e™'V,, (c1,....c.) ER"}.

*
DEMONSTRATION : Voyons deux démonstrations de ce résultat. Notons S l'ensemble des solutions du systeme diffé-
rentiel X" = AX.

1. On sait déja que S est un espace vectoriel de dimension n (conséquences de Propriétés 3 - P2). Notons, pour tout
ic 1], Vit ety
e D'aprés le lemme précédent, pour tout i € [1;n], i est solution de X" = AX.
e Montrons que la famille (Y;, ..., Y;) est une famille libre de S.
Soient ay, ..., a, € R. Supposons a1y + ... + a, Y, = 0. Autrement dit, supposons :

VteR, a1Yi(t)+ ...+ a,Y,(t) = 0,4
On a donc :
VteR, a1e"Vi+ . +aemV, =0,

En particulier, pour t = 0, on obtient :
aVi+ ... +a,V,=0,,
Or, la famille (V4, ..., V,) est libre (car c'est une base de M, 1(R)). D'oli :
g =..=a,=0

Et ainsi, la famille (Y4, ..., Y,) est libre.
Par conséquent, la famille (Y5, ..., ;) est une famille de S qui est :
v libre d'apres ce qui précede,
v de cardinal n, égal a dim(S).

Conclusion : la famille (Y, ..., ¥,) est une base de S et donc :

S — Vect(V, .., Vi)
={tr— Vi) + ..+ Ya(t), (c1,....c,) ER"}
={t— ce"Vi+ ..+ eV, (c,...c.) ER"}
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Important !

Puisque A est diagonalisable, il
existe bien une base de M, 1(R)
constituée de vecteurs propres
de A.

X Attention !
Il s'agit d'une égalité d'applica-
tions (définies sur R et a valeurs
dans M, 1(R)...).




2. Posons P la matrice dont les colonnes sont V4, ..., V, et D = diag(Ay, ..., A,). La matrice P est inversible, car cest la

matrice de passage de la base canonique de M, 1(R) vers la base (V4, ..., V,), et, puisque A est diagonalisable, on
a:
A= PDP'
21
: o 1 . . o X Attention !
Soit X € ¢ (R,M,,‘W(R)). Posons Z = P~' X et notons / = S Puisque chaque composante de X est € et ﬁ,...,zn sont des fonctions |
ZH

que P~" est constante, chaque composante de Z est €' et, pour tout t € R :
Z'(t) =P X(t)
Ainsi :

X' =AX & X' =PDP!
Z=P 'XetX =P7

& P/ =PDZ
e 7' =DJ J P est inversible
= Vie[1n], 2 =Xtz J D= diaglhr, .. An)
& Vie[1;n], 3¢, €R |Vt R, z(t) = e

ettt
s Jc, .. c) ER"|VEER, Z(t) =

el

Qem/

J

L) ERIVEER, X(t) =P

— 3((:" (~”) cR" |Vt ER, X(f) = e/l \/1 + o+ (;”em \/” resoudre le systeme différentiel
ar cette méthode.

: P=(Vi V) Remarque ———
c e’
0 L est inutile de calculer P~ pour
p

+

& Méthode !
Ce théoreme est hors programme, en revanche, les deux démonstrations fournissent deux méthodes classiques pour d‘zeprér’:”reervea:‘cit:"ssuiel?lsteg”"
résoudre des systémes différentiels. Mettons en application la seconde méthode sur l'exemple suivant :

conde, une fois la matrice A dia-
| ExempLE 10 |

gona Lsee 9 e est a savoir fatre
en autonomie.

X = 2

Résolvons le systeme différentiel (E) : ro_ 3 ; 6y d'inconnues x,y € €' (R,R). — Important !
vy = X Yy il est tout & fait possible, a l'écrit
N A— 2 =1 comme a loral, que la résolution
otons A = 3 6 d'un systeme différentiel ne soit
pas guidée...
o ) ) ) ) 1 1 3 e A lécrit, on guiderait en re-
e Sans difficulté, on trouve que la matrice A est diagonalisable et, en posant P = ( 1 S etD= 0 5] vanche la réduction de la matrice
' o - A, pour orienter vers cette mé-
la matrice P est inversible et : thode.
A= PDP" e A loral, le jury peut attendre
une prise d'initiative compléte.

e Soient x,y € €' (R, R). Notons X = (2) ainsit que 7 = P7'X.

Puisque x et y sont %' sur R et que P~ est constante, les composantes de Z sont %' sur R et, pour tout

teR:
Z'(t) = P TX'(t)
Ainsi :
oo I X = AX
y = 3x + 6y N
= X' =PDP" ,
e P7 —PD7 Z=P 'XetX =PZ
s 7' — D7 J P est inversible
. Z% _ 321 J en notant / = (2)
7z = 5z

I

J(c1, ) €R? |Vt ER, { ;

J

) Qe:"/
e, o) R IVEER, Z(t) = | °,

J

3t
e, ) R IVEER, X(t)=P (“C,ﬂ)

3t 5t
— H(C"rC‘Z)ERZ |Vt ER, X(l): ( cie” + ce )

—cie’' — 3ce™"
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«— J(,0) R |VtER, {

ot b}

e o0e

. , . e’ + e )
Conclusion : l'ensemble des solutions de (E) est {rM ( “ L ;J) (a1, 0)eRe ]»

Et si la matrice A n'est pas diagonalisable, mais seulement semblable a une matrice trianqulaire ?
Dans ce cas, au moins une des équations différentielles sur les z; aura un second membre non constant...
Ce n'est pas nécessairement problématique !

Pour terminer, voici une conséquence du théoréme précédent qui fournit un résultat sur le comportement des trajectoires
quand t — 400 :

THEOREME 7 COMPORTEMENT DES TRAJECTOIRES, CAS oU A EST DIAGONALISABLE

Soit A € M,(R) une matrice diagonalisable.

St A posséde au moins une valeur propre strictement positive, alors X’ = AX posséde des trajectoires
divergentes.

St les valeurs propres de A sont négatives ou nulles, alors toutes les trajectoires de X’ = AX convergent
vers un équilibre (pas nécessairement le méme).

Si les valeurs propres de A sont strictement négatives, alors toutes les trajectoires de X’ = AX convergent
vers (0, ..., 0), seul équilibre du systeme différentiel.

*
DEmoNnsTRATION @ Notons :
® Ay, ..., A, les valeurs propres de A (non nécessairement distinctes),

e (V4,...,V,) une base de M, ;(R) constituée de vecteurs propres de A (licite, car A est diagonalisable) telle que,
pour tout i € [1; n], Vi est vecteur propre de A associé a la valeur propre A;,

e pour tout k € [1;n], xk la k-iéme composante de X (ou X est une solution de X" = AX) et, pour tout i € [1;n],
Vik la k-itéme composante de V..

T1. Supposons que A posseéde au moins une valeur propre strictement positive. Quitte a échanger les valeurs propres,
supposons que A; > 0.
D'aprés le lemme 1, la fonction t — eV, est solution de X’ = AX sur R.
Or:

e A1 > 0, donc par produit et composition :
lim e™!
t—+oo

= +00

e V; est vecteur propre de A, donc V4 est non nul. Il existe donc k € [1; n], que nous considérons ensuite, tel
que la k-iéme composante de V4 soit non nulle.

Par produit, on obtient :

lim ey, = +o0
t—+o00

Par conséquent : la trajectoire associée & t+—s e!1'V; est divergente.

T2. Supposons que les valeurs propres de A sont négatives ou nulles. Quitte a échanger les valeurs propres, supposons :
vie[lpl, A=0 ; Vie[p+1n], A<0

Soit X une solution de X’ = AX. D'aprés le théoréme 6, il existe des réels c1, ..., ¢, tels que :
VieR, X(t)=) eV,
i=1
Or:
e Pour tout i € [p +1;n], A < 0. D'oli, par produit et composition :
Vie[p+1,n], lim et =0

Dot :
Vke[1;n], Yie[p+1;n] ,UT e’ =0

e Pour tout i € [[1;p], 4 = 0. Dot :
Yie [1;p], Vt ER, ce’'V, =V,

Et ainsi :
Vk € [1;n], Yie[1;p] [l'in ey = vk
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V'S

Confusion d’objets !

Une trajectoire est un sous-
ensemble de de R" et un équi-
libre est un élément de M, 1(R)

{ (ou plus précisément une ap-
plication constante de R dans
M, 1(R), assimilée a un élément
de M, 1(R))... On comprend bien
l'idée tout de méme !

— Remarque ——

Les cas ol O est seule VP et ot
0 n'est pas VP sont inclus (en
considérant p = netp = 0
respectivement).

Dans le cas ot p = 0, chaque

P

somme Z(...) sera nulle, par
i=1

convention.




T3.

On obtient finalement par somme :

t—

p
vk e [in], lim x(f) = 21 CVi

p
Par conséquent : la trajectoire associée a X converge vers E Vi
i=1

p
Notons V = Z ¢;V; et montrons que V est un équilibre de X’ = AX.

i=1
On sait que, pour tout i € [1;p], Vi est vecteur propre de A associé a la valeur propre 0.
Donc : Vi € [1;p], Vi € ker(A). Mais ker(A) est un espace vectoriel, il est donc stable par combinaison linéaire.
Ainst :

V € ker(A)

D’aprés la propriété 5, on en déduit que la fonction ¢t — V est un équilibre de X’ = AX.
Conclusion : toutes les trajectoires de X’ = AX convergent vers un équilibre.

Cas particulier de la démonstration précédente, dans le cas oli p = 0...
On obtient :
vk e [1;n]. tliJrrn x(t)=0

Par conséquent : la trajectoire associée a X converge vers (0, ..., 0).

Bien évidemment, t — 0,1 est un équilibre de X’ = AX. Et cest le seul! En effet, les valeurs propres de A sont

strictement négatives, donc 0 n'est pas valeur propre de A. Ainsi, ker(A) = {0,1}. Et donc, d'aprés la propriété 5,

t+—— 0,1 est le seul équilibre de X" = AX. J
*
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