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Introduction...

On a bien compris (du moins, je l’espère) que la notion d’ensemble est au centre de l’étude des mathématiques. Un ensemble est une collectiond’objets... Mais on voit bien que, dans sa généralité, cette notion est au mieux insuffisante, sinon peu manipulable. On préfère déjà les ensemblesd’objets de même nature : ensemble de nombres, ensemble de fonctions, ensembles de matrices... sur lesquels on peut donc définir des opérations.
Une fois un ensemble d’objets de même nature constitué, on peut se demander quelle est sa structure. L’étude des structures algébriques mathématiquesest essentielle pour identifier le type d’ensemble.Plusieurs structures mathématiques existent, en voici trois parmi les plus courantes :
• Introduit en 1893 par Heinrich Weber (1842-1913, allemand) : le groupe. Un ensemble G est un groupe lorsqu’il est muni d’une loi de composition

interne (une opération entre éléments), notée par exemple ⊕, et qui vérifie : G est stable par ⊕, la loi ⊕ est associative, il existe un neutre de
⊕ appartenant à G , et tout élément de G possède un symétrique par ⊕ dans G .Sont des groupes : (Z, +), (R∗, × ), (Mn(R), +), l’ensemble des applications bijectives de E dans E (muni de la composition)... Ne sont pas desgroupes : (N, +), (R, × ), (R∗, +)...Si de plus, ⊕ est commutative, on dit que G est un groupe abélien.

• Introduit en 1877 par Richard Dedekind (1831-1916, allemand) : le corps. Un ensemble K est un corps lorsqu’il est muni de deux lois decomposition internes, notées par exemples ⊕ et ⋆, qui vérifient : K est stable par ⊕ et ⋆, (K, ⊕) est un groupe abélien, • se distribue sur ⊕, ⋆possède un neutre dans K, tout élément de K (excepté le neutre de ⊕) possède un inverse pour ⋆ dans K.(Q, +, × ) et (R, +, × ) sont des corps... Tous les autres ensembles usuels n’en sont pas !
• Manipulé depuis le milieu du XVIIème siècle en géométrie, c’est Giuseppe Peano (1858-1932, italien [c’est un peu le roi de l’axiomatisation]) quidonna une définition rigoureuse et axiomatique d’espace vectoriel en 1888. Cette structure a le bon goût d’être un bon compromis entre "facileà manipuler" et "de nombreux ensembles peuvent être vus comme des espaces vectoriels" ; rajoutons à cela qu’elle peut avoir une interprétationgéométrique... on est face à une excellente structure algébrique !
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Pour bien démarrer...
1. Définition d’une matrice inversible. Propriétés.Soient n ∈ J2;+∞J et A ∈Mn(R).

• Définition. On dit que A est inversible lorsqu’il existe une matrice B ∈Mn(R) telle que AB = BA = In .
• Propriétés.

✱ A est inversible si, et seulement si, il existe une matrice B ∈Mn(R) telle que AB = In ou BA = In .
✱ Si A est inversible, alors A−1 est inversible et (A−1)−1 = A.

✱ Si A est inversible, alors tA est inversible et (tA
)−1 = t(A−1).

✱ Si A et B sont inversibles, alors AB est inversible et (AB)−1 = B−1A−1 .
2. Conditions suffisantes de non inversibilité d’une matrice.Soient n ∈ J2;+∞J et A ∈Mn(R).

• Si A contient une ligne (ou colonne) nulle, alors A n’est pas inversible.
• Si l’une des lignes (respectivement colonnes) de A est combinaison linéaire des autres lignes (respectivement colonnes), alors A n’est pasinversible.

3. Inversibilité des matrices de M2(R).Soit A = (a b
c d

)
∈M2(R). On appelle déterminant de A, noté det(A), le réel défini par det(A) = ad − bc.On a :

A est inversible si, et seulement si, det(A) ̸= 0.
Et le cas échéant :

A−1 = 1det(A)
(

d −b
−c a

)

4. Inversibilité des matrices triangulaires. une matrice triangulaire est inversible si, et seulement si, tous ses coefficients diagonaux sont non nulssi, et seulement si, le produit de ses coefficients diagonaux est non nul
5. Soient A = 1 1 12 0 −23 1 −1

 et X = x
y
z

. Résoudre AX = 03,1 .
On a :

AX = 03,1 ⇐⇒


x + y + z = 02x − 2z = 03x + y − z = 0

⇐⇒
L2 ← L2 − 2L1
L3 ← L3 − 3L1


x + y + z = 0
− 2y − 4z = 0
− 2y − 4z = 0

⇐⇒
{

x + y + z = 0
− y − 2z = 0

⇐⇒


x + y = −z

y = −2z
z = z

⇐⇒


x = z

y = −2z
z = z

⇐⇒ X =  z
−2z

z


Conclusion : l’ensemble des solutions de l’équation AX = 03,1 est

z

 1
−21
 , z ∈ R

.
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Ce chapitre est une introduction aux espaces vectoriels. Il précède celui sur les applications linéaires entre espaces
vectoriels qui donnera un tout autre sens aux matrices que nous connaissons déjà...

Je fais le choix de sortir du cadredu programme officiel ! Nous al-lons un peu plus loin, en prenantune approche différente de cellesuggérée...

Important !

Définitions 1 Espace vectoriel

D1 Un ensemble non vide E est un espace vectoriel réel (ou R-espace vectoriel) lorsque :
• E est muni d’une "addition interne", notée +, vérifiant :

✓ ∀u⃗, v⃗ ∈ E , u⃗ + v⃗ ∈ E (stabilité de E par addition interne)
✓ ∀u⃗, v⃗ , w⃗ ∈ E , (u⃗ + v⃗ ) + w⃗ = u⃗ + (v⃗ + w⃗) (associativité de +)
✓ ∀u⃗, v⃗ ∈ E , u⃗ + v⃗ = v⃗ + u⃗ (commutativité de +)
✓ il existe un élément −→0E ∈ E tel que : ∀u⃗ ∈ E , u⃗ +−→0E = u⃗ (existence d’un neutre pour +)
✓ ∀u⃗ ∈ E, ∃v⃗ ∈ E / u⃗ + v⃗ = −→0E (existence d’un opposé dans E pour +)

• E est muni d’une "multiplication externe", notée ·, vérifiant :
✓ ∀λ ∈ R, ∀u⃗ ∈ E , λ · u⃗ ∈ E (stabilité de E par multiplication externe)
✓ ∀λ, µ ∈ R, ∀u⃗ ∈ E , λ · (µ · u⃗) = (λ · µ) · u⃗ (associativité de ·)
✓ ∀λ ∈ R, ∀u⃗, v⃗ ∈ E , λ · (u⃗ + v⃗ ) = λ · u⃗ + λ · v⃗ (distributivité de · sur +)
✓ ∀λ, µ ∈ R, ∀u⃗ ∈ E , (λ + µ) · u⃗ = λ · u⃗ + µ · u⃗ (distributivité de · sur addition réelle)
✓ ∀u⃗ ∈ E , 1 · u⃗ = u⃗ (le réel 1 est neutre pour ·)

D2 Si E est un espace vectoriel réel, alors les éléments de E sont appelés des vecteurs, et on parle parfoisde scalaires pour désigner les réels de la multiplication externe.

On omettra le symbole · pour lamultiplication...
✎ Notations

Un espace vectoriel est un en-semble muni d’une addition in-terne et d’une multiplication sca-laire qui ont les bonnes propriétéshabituelles permettant les cal-culs !Puisque E est stable par + et par
·, il est stable par combinaison
linéaire :
∀λ, µ ∈ R, ∀u⃗, v⃗ ∈ E, λu⃗+µv⃗ ∈ EEt si c’est vrai pour deux...

En gros...

Propriétés 1

Soit E un espace vectoriel réel.
P1 Pour tout u⃗ ∈ E , u⃗ admet un unique opposé, noté −u⃗

P2 L’élément neutre pour + est unique, noté −→0E , appelé vecteur nul de E .

P3 ∀λ ∈ R, ∀u⃗ ∈ E, λ · (−u⃗) = (−λ) · u⃗ = −(λ · u⃗)
P4 ∀λ ∈ R, ∀u⃗ ∈ E,

λ · u⃗ = −→0E ⇐⇒

 λ = 0ou
u⃗ = −→0E


P5 ∀n ∈ J2;+∞J, ∀(λ1, ..., λn) ∈ Rn, ∀(u⃗1, ..., u⃗n) ∈ En, λ1u⃗1 + ... + λnu⃗n ∈ E .

⋆ Démonstration : Assez immédiates... ⋆

Exemples 1

Les ensembles suivants sont des espaces vectoriels réels :

E1 R, R2 , R3 et plus généralement Rn pour tout n ∈ N∗ , munis de l’addition interne usuelle et de la multiplicationscalaire. Rn est l’ensemble des n-uplets deréels.
☞ Rappel...

E2 M2,1(R), M3,1(R) et plus généralement Mn,1(R) pour tout n ∈ N∗ , munis de l’addition interne usuelle sur lesmatrices colonnes et de la multiplication scalaire.
E3 L’ensemble des matrices de tailles n × p à coefficients réels Mn,p(R), muni de l’addition interne usuelle et dela multiplication scalaire.
E4 L’ensemble des matrices carrées de tailles n à coefficients réels Mn(R), muni de l’addition interne usuelle etde la multiplication scalaire. E4 et E5 sont même un peu plusqu’un EV, puisque ces ensemblespeuvent être munis d’une multi-plication interne... Mais de façongénérale, ce n’est pas le cas pourun EV.

☞ Pour info...

E5 L’ensemble des fonctions polynomiales à coefficients réels R[x ], muni de l’addition interne usuelle et de lamultiplication scalaire.
E6 L’ensemble des fonctions polynomiales de degré inférieur ou égal à n (pour tout n ∈ N∗) Rn[x ], muni del’addition interne usuelle et de la multiplication scalaire. L’ensemble des fonctions poly-nomiales de degré égal à n n’estpas un espace vectoriel car : ilne contient pas la fonction poly-nomiale nulle, qui est le neutrepour l’addition.

✘ Attention !

E7 L’ensemble des fonctions définies sur un intervalle I de R, à valeurs dans R, noté F (I, R), muni de l’additioninterne usuelle et de la multiplication scalaire.
E8 L’ensemble des fonctions définies, dérivables deux fois et telles que f ′′ est continue sur un intervalle I de R,noté C 2(I, R), muni de l’addition interne usuelle et de la multiplication scalaire.

Dans toute la suite, E est un espace vectoriel réel, n ∈ J2; +∞J et (e⃗1, e⃗2, ..., e⃗n) une famille de vecteurs de E .
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I Sous-espaces vectoriels
I.1 Définition et généralités

Définition 2 Sous-espace vectoriel

Un ensemble F est un sous-espace vectoriel de E lorsque :
✓ F ⊂ E
✓ F est non vide
✓ ∀λ, µ ∈ R, ∀u⃗, v⃗ ∈ F, λu⃗ + µv⃗ ∈ F (F est stable par combinaison linéaire)

En particulier −→
0E ∈ F .Cela sera utile dans deux cas :

• pour montrer que F est nonvide
• parfois pour montrer qu’unsous-ensemble n’est pas un sous-espace vectoriel !

Important !

A quoi bon cette histoire de sous-espace vectoriel ? Pour la raison qui suit :
Propriété 2

Si F un sous-espace vectoriel de E , alors F est un espace vectoriel.
⋆ Démonstration : ... ⋆

♣ Méthode 1 ♣ Pour montrer qu’un ensemble est un espace vectoriel :on montrera que c’est un sous-espace vectoriel d’un espace vectoriel de référence. Et c’est toujours ce que l’on fera !➠Réflexe !

Exemples 2

E1 {−→0E} et E sont des sous-espaces vectoriels de E ...
E2 Soient A ∈ Mn(R) et F = {M ∈ Mn(R) / AM = MA}. Montrons que F est un sous-espace vectorielde Mn(R) .

Être dans F c’est deux choses :être une matrice de Mn(R) etcommuter avec A.
✓ Rigueur !

✓ Par définition : F ⊂Mn(R) et Mn(R) est un espace vectoriel réel.
✓ La matrice nulle commute avec A, donc 0n ∈ F : F est non vide.
✓ Soient λ, µ ∈ R et M, N ∈ F . Montrons que λM + µN ∈ F .

✱ On a déjà M, N ∈Mn(R) et Mn(R) est un espace vectoriel, donc λM + µN ∈Mn(R).

✱ Ensuite :
A(λM + µN) = λAM + µAN

M ∈ F , donc AM = MA ; et N ∈ F , donc AN = NA= λMA + µNA= (λM + µN)A
Par conséquent :

λM + µN ∈ F

Conclusion : F est un sous-espace vectoriel de Mn(R) (donc F est un espace vectoriel réel).
E3 Soit F = {f ∈ C 2(R, R) / ∀x ∈ R, f ′′(x)− 3f ′(x) + 2f (x) = 0}. Montrons que F est un sous-espace vectorielde C 2(R, R) .

✓ Par définition : F ⊂ C 2(R, R) et C 2(R, R) est un espace vectoriel réel.
✓ La fonction nulle appartient à F : F est non vide.
✓ Soient λ, µ ∈ R et f , g ∈ F . Montrons que λf + µg ∈ F .

✱ On a déjà f , g ∈ C 2(R, R) et C 2(R, R) est un espace vectoriel, donc λf + µg ∈ C 2(R, R).

✱ Ensuite, pour tout x ∈ R, par linéarité de la dérivation :
(λf + µg)′′(x)− 3(λf + µg)′(x) + 2(λf + µg)(x) = (λf ′′ + µg′′)(x)− 3(λf ′ + µg′)(x) + 2(λf + µg)(x) linéarité de l’évaluation en x= λf ′′(x) + µg′′(x)− 3λf ′(x)− 3µg′(x) + 2λf (x) + 2µg(x)= λ

(
f ′′(x)− 3f ′(x) + 2f (x)) + µ

(
g′′(x)− 3g′(x) + 2g(x))

f , g ∈ F= 0
Par conséquent :

λf + µg ∈ F

Conclusion : F est un sous-espace vectoriel de C 2(R, R) (donc F est un espace vectoriel réel).
E4 L’ensemble F = {P ∈ R2[x ] / P(0) = 1} n’est pas un sous-espace vectoriel de R2[x ] car il ne contient pas lafonction polynomiale nulle.
E5 Les sous-espaces vectoriels de R2 sont {(0, 0)}, R2 ainsi que les droites passant par (0, 0).
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E6 Soient F et G deux sous-espaces vectoriels d’un espace vectoriel réel E . Montrons que F∩G est un sous-espacevectoriel de E .
✓ Puisque F et G sont des sous-espaces vectoriels de E , on a F ⊂ E et G ⊂ E . Donc F ∩ G ⊂ E .
✓ Puisque F et G sont des sous-espaces vectoriels de E , on a −→0E ∈ F er −→0E ∈ G . Ainsi −→0E ∈ F ∩ G : F ∩ Gest non vide.
✓ Soient λ, µ ∈ R et u⃗, v⃗ ∈ F ∩ G . Montrons que λu⃗ + µv⃗ ∈ F ∩ G .

✱ On a déjà u⃗, v⃗ ∈ E et E est un espace vectoriel, donc λu⃗ + µv⃗ ∈ E .
✱ De la même façon, λu⃗ + µv⃗ ∈ F et λu⃗ + µv⃗ ∈ G .Par conséquent :

λu⃗ + µv⃗ ∈ F ∩ G

Conclusion : F ∩ G est un sous-espace vectoriel de E .
I.2 Sous-espaces vectoriels engendrésVoyons un cas particulier de sous-espace vectoriel...

Définition 3 Combinaison linéaire

Soit u⃗ ∈ E . On dit que u⃗ est combinaison linéaire des vecteurs e⃗1, e⃗2, ..., e⃗n lorsqu’il existe des réels λ1, λ2, ..., λntels que u⃗ = n∑
i=1 λie⃗i .

Exemples 3

Soient X = 100
 et Y = 111

 deux matrices de M3,1(R).
E1 Montrons que U = −322

 est combinaison linéaire de X et Y . Soit on remarque une combi-naison linéaire simple... Soit onrésout U = aX + bY , d’inconnues
a, b ∈ R.
♣ Méthode !

On remarque que :
U = 2Y − 5X

Conclusion : U est combinaison linéaire de X et Y .
E2 Montrons que V = 123

 n’est pas combinaison linéaire de X et Y .
Soient a, b ∈ R. On a :

V = aX + bY ⇐⇒

123
 = a

100
+ b

111


⇐⇒


a + b = 1

b = 2
b = 3

Ce système ne possède aucune solution.
Conclusion : V n’est pas combinaison linéaire de X et Y .
E3 L’ensemble des combinaisons linéaires de X et Y est :


a + b

b
b

 , (a, b) ∈ R2
.

Théorème 1

L’ensemble de toutes les combinaisons linéaires des vecteurs e⃗1, e⃗2, ..., e⃗n est un sous-espace vectoriel de E .
⋆ Démonstration :Notons F l’ensemble de toutes les combinaisons linéaires des vecteurs e⃗1, e⃗2, ..., e⃗n . Autrement dit :

F = { n∑
k=1 λk e⃗k , (λ1, ..., λn) ∈ Rn

}
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✓ Soit u⃗ ∈ F . Il existe des réels λ1, ..., λn , que nous considérons ensuite, tels que u⃗ = n∑
k=1 λk e⃗k .

Puisque e⃗1, ..., e⃗n ∈ E et que E est un espace vectoriel : n∑
k=1 λk e⃗k ∈ E . Autrement dit : u⃗ ∈ E .

Par conséquent : F ⊂ E .
✓ On a −→0E = n∑

k=1 0 × e⃗k . Ainsi −→0E ∈ F : F est non vide.
✓ Soient a, b ∈ R et u⃗, v⃗ ∈ F . Montrons que au⃗ + bv⃗ ∈ F .Puisque u⃗ ∈ F , il existe des réels λ1, ..., λn , que nous considérons ensuite, tels que u⃗ = n∑

k=1 λk e⃗k .
Puisque v⃗ ∈ F , il existe des réels µ1, ..., µn , que nous considérons ensuite, tels que v⃗ = n∑

k=1 µk e⃗k .
Ainsi :

au⃗ + bv⃗ = a
n∑

k=1 λk e⃗k + b
n∑

k=1 µk e⃗k

= n∑
k=1 (aλk + bµk )e⃗k

Or, pour tout k ∈ J1; nK, aλk + bµk ∈ R...Par conséquent : au⃗ + bv⃗ est combinaison linéaire des vecteurs e⃗1, ..., e⃗n . Autrement dit :
au⃗ + bv⃗ ∈ F

Conclusion : F est un sous-espace vectoriel de E . ⋆

Définition 4 Sous-espace vectoriel engendré par une famille de vecteurs

L’espace vectoriel des combinaisons linéaires des vecteurs e⃗1, e⃗2, ..., e⃗n est appelé sous-espace vectoriel engendré
par la famille (e⃗1, e⃗2, ..., e⃗n), et noté Vect(e⃗1, e⃗2, ..., e⃗n).

On peut aisément démontrer quec’est le plus petit (au sens del’inclusion) espace vectoriel conte-nant les vecteurs e⃗1, e⃗2, ..., e⃗n .
☞ Pour info...

Le sous-espace vectoriel engendrépar un unique vecteur est l’en-semble de ses multiples.
Cas particulier

♣ Méthode 2 ♣ Pour démontrer que F est un sous-espace vectoriel de E :on pourra tenter de l’écrire comme le sous-espace vectoriel engendré par une famille de vecteurs de E .
Exemple 4

Considérons F = {(a a + b
a a − b

)
∈M2(R) / (a, b) ∈ R2}. Montrons que F est un sous-espace vectoriel deM2(R).

F = {(a a + b
a a − b

)
∈M2(R) / (a, b) ∈ R2}

= {a
(1 11 1) + b

(0 10 −1) ∈M2(R) / (a, b) ∈ R2}
= Vect((1 11 1) ,

(0 10 −1))
Puisque (1 11 1) ,

(0 10 −1) ∈M2(R), on en déduit que F est un sous-espace vectoriel de M2(R).

Écrire un ensemble comme unssev engendré équivaut à expli-
citer cet ensemble. S’il est déjàdonné de façon explicite, il n’y aplus grand chose à faire...

En gros...

Propriétés 3

Soient e⃗1, e⃗2, ..., e⃗n+1 des vecteurs de E .
P1 Si e⃗n+1 est une combinaison linéaire de e⃗1, e⃗2, ..., e⃗n , alors Vect(e⃗1, e⃗2, ..., e⃗n+1) = Vect(e⃗1, e⃗2, ..., e⃗n).En particulier : Vect(e⃗1, e⃗2, ..., e⃗n, −→0E ) = Vect(e⃗1, e⃗2, ..., e⃗n).
P2 ∀α1, α2, ..., αn ∈ R∗, Vect(α1e⃗1, α2e⃗2, ..., αne⃗n) = Vect(e⃗1, e⃗2, ..., e⃗n).
P3 ∀α1, α2, ..., αn−1 ∈ R, Vect(e⃗1, e⃗2, ..., e⃗n) = Vect(e⃗1, e⃗2, ..., e⃗n + n−1∑

i=1 αie⃗i

).
⋆ Démonstration : Pas très difficiles, ni très intéressantes... ⋆
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L’intérêt de ces deux propriétés est de pouvoir "réduire" la famille de vecteurs qui engendre Vect(...).
Exemple 5{( 3x + 2y

x + 2y + z

)
∈M2,1(R) / (x, y, z) ∈ R3} = {x

(31) + y
(22) + z

(01) / (x, y, z) ∈ R3}
= Vect((31) ,

(22) ,
(01))

= Vect((31) ,
(11) ,

(01)) (31) = 3(11)− 2(01)= Vect((11) ,
(01))

Il semble maintenant que l’on ne puisse plus simplifier la famille obtenue... L’ensemble étudié est un sous-espace vectoriel de M2,1(R),puisqu’il est l’espace vectorielengendré par une famille de vec-teurs de M2,1(R).

Remarque

II Base et dimension
II.1 Famille libre, génératrice, base

Définitions 5

D1 On dit que la famille (e⃗1, e⃗2, ..., e⃗n) est une famille génératrice de E lorsque
∀u⃗ ∈ E, ∃(λ1, ..., λn) ∈ Rn / u⃗ = n∑

k=1 λk e⃗k

Autrement dit : (e⃗1, e⃗2, ..., e⃗n) est une famille génératrice de E lorsque E = Vect(e⃗1, e⃗2, ..., e⃗n).
D2 On dit que la famille (e⃗1, e⃗2, ..., e⃗n) est une famille libre de E lorsque :

∀(λ1, λ2, ..., λn) ∈ Rn,
(

λ1e⃗1 + λ2e⃗2 + ... + λne⃗n = −→0E =⇒ (
∀i ∈ J1; nK, λi = 0))

Autrement dit : (e⃗1, e⃗2, ..., e⃗n) est libre lorsque la seule combinaison linéaire donnant −→0E est la combinaisonlinéaire triviale.Si la famille (e⃗1, e⃗2, ..., e⃗n) est libre, on dit que les vecteurs e⃗1, e⃗2, ..., e⃗n sont linéairement indépendants.
D3 On dit que la famille (e⃗1, e⃗2, ..., e⃗n) est une base de E lorsque

∀u⃗ ∈ E, ∃!(λ1, ..., λn) ∈ Rn / u⃗ = n∑
k=1 λk e⃗k

Une famille qui n’est pas libre est
liée. C’est le cas lorsqu’un de cesvecteurs est combinaison linéairedes autres ; ou quand il existe unecombinaison linéaire non trivialedonnant le vecteur nul.

Vocabulaire

Exemples 6Commençons par donner (sans justifier) quelques bases usuelles :
E1 La famille ((1, 0), (0, 1)) est une base de R2 . On dit une base et pas la base,c’est la base !

✘ Attention !

E2 La famille ((10) ,
(01)) est une base de M2,1(R). La famille 100

 ,

010
 ,

001
 est une base de

M3,1(R).
E3 La famille




100...0

 ,


010...0

 , ...,


00...01


 est une base de Mn,1(R).

E4 La famille ((1 00 0) ,
(0 10 0) ,

(0 01 0) ,
(0 00 1)) est une base de M2(R).

E5 La famille (x 7−→ 1, x 7−→ x, x 7−→ x2) est une base de R2[x ].
E6 La famille (x 7−→ 1, x 7−→ x, ..., x 7−→ xn) est une base de Rn[x ].

Toutes les bases données ci-dessus sont les bases canoniquesdes EV mentionnés. Ce sont lesbases naturelles dans lesquelleson travaille.

Vocabulaire

E7 Montrons que la famille ((12) ,
(
−11 )) est une famille libre de M2,1(R).

Soient a, b ∈ R. Supposons a
(12) + b

(
−11 ) = 02,1 .
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Or :
a
(12) + b

(
−11 ) = 02,1 ⇐⇒

{
a − b = 02a + b = 0

⇐⇒
L2 ← L2 − 2L1

{
a − b = 03b = 0

⇐⇒
{

a = 0
b = 0

Donc : a = b = 0.
Conclusion : la famille ((12) ,

(
−11 )) est une famille libre de M2,1(R). Deux vecteurs sont linéairementindépendants lorsqu’ils sont non

colinéaires.
À retenir...

E8 La famille ((12) ,
(
−11 ) ,

(21)) est-elle une famille libre de M2,1(R) ?On remarque que (12) = (−11 ) + (21)Autrement dit : (12)− (−11 )− (21) = 02,1
Conclusion : la famille ((12) ,

(
−11 ) ,

(21)) n’est pas une famille libre de M2,1(R).
E9 Montrons que la famille 100

 ,

110
 ,

111
 est une famille libre de M3,1(R). Un famille de matrices colonnesdont les coefficients sont échelon-

nés est toujours libre.
À retenir...

Soient a, b, c ∈ R. Supposons a

100
+ b

−110
+ c

111
 = 03,1 .

Or :
a

100
+ b

−110
+ c

111
 = 03,1 ⇐⇒


a = 0
a + b = 0
a + b + c = 0

⇐⇒


a = 0
b = 0
c = 0

Donc : a = b = c = 0.
Conclusion : la famille 100

 ,

110
 ,

111
 est une famille libre de M3,1(R).

E10 Notons f1 : x 7−→ 1, f2 : x 7−→ 1 + x et f3 : x 7−→ 1 + x + x2 .Montrons que la famille (f1, f2, f3) est une famille libre de R2[x ].Soient a, b, c ∈ R. Supposons af1 + bf2 + cf3 = 0. Attention, il s’agit d’une égalité defonctions !
Confusion d’objets !

Autrement dit, on a :
∀x ∈ R, 1 + a(1 + x) + b(1 + x + x2) = 0On a ainsi :
∀x ∈ R, a + b + c + (b + c)x + cx2 = 0Autrement dit : (a + b + c)e0 + (b + c)e1 + ce2 = 0Où e0 : x 7−→ 1, e1 : x 7−→ x et e2 : x 7−→ x2 .Or (e0, e1, e2) est la base canonique de R2[x ], cette famille est donc en particulier libre.Par conséquent :
a + b + c = 0 ; b + c = 0 ; c = 0D’où immédiatement :

a = b = c = 0
Conclusion : la famille (f1, f2, f3) est une famille libre de R2[x ]. Une famille de fonctions polyno-miales échelonnées en degré estlibre.

À retenir...
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Des choses bien utiles :
• Une famille contenant le vecteur nul est liée .
• Une famille contenant deux fois le même vecteur est liée .
• Une famille dont l’un des vecteurs est une combinaison linéaire des autres est liée .
• Une famille formée d’un seul vecteur est libre si, et seulement si, ce vecteur est non nul .
• Une famille formée uniquement de deux vecteurs est libre si, et seulement si, ces deux vecteurs nesont pas colinéaires .
• Une famille de vecteurs de Mn,1(R) ou de Rn dont les coefficients sont échelonnés est libre.
• Une famille de fonctions polynomiales échelonnées en degré est libre.
• Une sous-famille d’une famille libre est libre.

Les définitions précédentes impliquent naturellement la propriété suivante, qui sera très utile en pratique : En fait, il existe un théorème (HP)qui affirme que :
• de toute famille génératrice,on peut extraire une sous-famillelibre et génératrice...
• toute famille libre peut êtrecomplétée en une famille libre etgénératrice...

☞ Pour info...

Propriété 4

Une famille de vecteurs de E est une base si, et seulement si, elle est libre et génératrice.
⋆ Démonstration :Soient n ∈ J2;+∞J et (e⃗1, ..., e⃗n) une famille de vecteurs de E . Montrons que (e⃗1, ..., e⃗n) est une base de E si, etseulement si, (e⃗1, ..., e⃗n) est une famille libre et génératrice de E .Procédons par double implication.
⇒ Supposons que (e⃗1, ..., e⃗n) est une base de E .

✱ Montrons que (e⃗1, ..., e⃗n) est génératrice de E . Soit u⃗ ∈ E . Puisque (e⃗1, ..., e⃗n) est une base de E , il existeun unique n-uplet de réels (λ1, ..., λn) tel que u⃗ = n∑
1 λk e⃗k .

D’où le résultat...
Conclusion : (e⃗1, ..., e⃗n) est génératrice de E .

✱ Montrons que (e⃗1, ..., e⃗n) est libre. Soient λ1, ..., λn ∈ R. Supposons n∑
k=1 λk e⃗k = −→0E .

Or a aussi −→0E = n∑
k=1 0 × e⃗k . Et la famille (e⃗1, ..., e⃗n) est une base de E , donc en particulier le vecteur nul

de E se décompose de façon unique en combinaison linéaire des vecteurs e⃗1, ..., e⃗n .Par conséquent, les deux combinaisons linéaires exhibées sont identiques... D’où :
∀k ∈ J1; nK, λk = 0

Conclusion : la famille (e⃗1, ..., e⃗n) est libre.
⇐ Supposons que (e⃗1, ..., e⃗n) est libre et génératrice. Montrons :

∀u⃗ ∈ E, ∃!(λ1, ..., λn) ∈ Rn / u⃗ = n∑
k=1 λk e⃗k

Soit u⃗ ∈ E .

✱ Puisque (e⃗1, ..., e⃗n) est génératrice de E , il existe (λ1, ..., λn) ∈ Rn , que nous considérons ensuite, tel que
u⃗ = n∑

k=1 λk e⃗k .

✱ Supposons qu’il existe (µ1, ..., µn) ∈ Rn , que nous considérons ensuite, tel que u⃗ = n∑
k=1 µk e⃗k .

Pour démontrer l’unicité, deuxméthodes :
• Par l’absurde : supposer qu’ilen existe deux différents et abou-tir à une absurdité.
• Supposer l’existence de deux, etmontrer qu’ils sont égaux.

♣ Méthode !

Ainsi :
n∑

k=1 λk e⃗k = n∑
k=1 µk e⃗k

D’où :
n∑

k=1 (λk − µk )e⃗k = −→0E

Or la famille (e⃗1, ..., e⃗n) est libre dans E , on obtient donc :
∀k ∈ J1; nK, λk − µk = 0Autrement dit :
∀k ∈ J1; nK, λk = µkD’où le résultat.On a ainsi établi :

∃!(λ1, ..., λn) ∈ Rn / u⃗ = n∑
k=1 λk e⃗k

Conclusion : la famille (e⃗1, ..., e⃗n) est une base de E .
• Le caractère "générateur" équi-vaut à l’existence d’une décompo-sition en combinaison linéaire.
• Le caractère "libre" équivautà l’unicité (si existence) d’unedécomposition en combinaisonlinéaire.

Remarques

⋆
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Exemples 7

E1 Donnons une base de l’espace vectoriel F étudié dans Exemple 4.On avait obtenu :
F = Vect((1 11 1) ,

(0 10 −1))
Par conséquent, la famille ((1 11 1) ,

(0 10 −1)) est :
✓ génératrice de F par définition,
✓ libre car seulement constituée de deux vecteurs non colinéaires.

Conclusion : la famille ((1 11 1) ,
(0 10 −1)) est une base de F .

E2 Considérons A = 1 1 23 1 41 0 1
 et F = {X ∈M3,1(R) / AX = 03,1}.

Montrons que F est un sous-espace vectoriel de M3,1(R) et déterminons-en une base.
Soit X = x

y
z

 ∈M3,1(R). On a :
X ∈ F ⇐⇒ AX = 03,1

⇐⇒


x + y + 2z = 03x + y + 4z = 0
x + z = 0

⇐⇒
L2 ← L2 − 3L1
L3 ← L3 − L1


x + y + 2z = 0
− 2y − 2z = 0
− y − z = 0

⇐⇒
{

x + y + 2z = 0
− y − z = 0

⇐⇒


x + y = −2z

y = −z
z = z

⇐⇒


eq1
eq2

...
x = −z, y = −z, z = z

⇐⇒ X = z

−1
−11


Par conséquent :
F =

z

−1
−11
 , z ∈ R


= Vect−1

−11


Puisque −1
−11
 ∈M3,1(R), on en déduit que F est un sous-espace vectoriel de M3,1(R).

De surcroît, la famille −1
−11
 est une famille de F qui est :

✓ génératrice de F par définition,
✓ libre car constituée d’une unique vecteur non nul.

Conclusion : la famille −1
−11
 est une base de F .
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Propriété 5

Si Fl est une famille libre de E et Fg est une famille génératrice de E , alors Card(Fl) ⩽ Card(Fg).
⋆ Démonstration : Raisonnons par l’absurde et supposons qu’il existe une famille libre Fl et une famille génératrice Fgde E telles Card(Fl) > Card(Fg). Notons n = Card(Fl) et m = Card(Fg) ainsi que Fl = (e⃗1, ..., e⃗m) et Fg = (f⃗1, ..., f⃗n).
• Puisque (f⃗1, ..., f⃗n) est génératrice de E et que e⃗1 ∈ E , il existe des réels λ1, ..., λn , que nous considérons ensuite,tels que e⃗1 = λ1 f⃗1 + ... + λn f⃗n .Au moins un de ces λi est non nul, sinon on aurait e⃗1 = −→0E et la famille Fl ne serait alors pas libre.Quitte à réordonner les vecteurs de Fg , supposons que λn ̸= 0.On obtient alors :

f⃗n = 1
λn

(λ1 f⃗1 + ... + λn−1 f⃗n−1 − e⃗1)Par conséquent :
E = Vect(f⃗1, ..., f⃗n)= Vect(f⃗1, ..., f⃗n−1, λ1 f⃗1 + ... + λn−1 f⃗n−1 − e⃗1)= Vect(f⃗1, ..., f⃗n−1, e⃗1)

La famille (f⃗1, ..., f⃗n−1, e⃗1) est donc génératrice de E .
• De la même façon, il existe des réels λ1, ..., λn−1 et µ1 , que nous considérons ensuite, tels que e⃗2 = λ1 f⃗1 + ... +

λn−1 f⃗n−1 + µ1e⃗1 .Au moins un des λi est non nul, sinon e⃗2 serait multiple de e⃗1 et donc la famille Fl ne serait pas libre...En procédant comme ci-dessus, on obtient finalement (quitte à réordonner les vecteurs de (f⃗1, ..., f⃗n−1)) que lafamille (f⃗1, ..., f⃗n−2, e⃗1, e⃗2) est génératrice de E .
• On poursuit ainsi... On pourrait démontrer par ré-currence finie que pour tout

k ∈ J0; nK, E est engendré par kvecteurs de Fg et n − k vecteursde Fl ...

Remarque

Au bout de n étapes de ce raisonnement, on obtient que la famille (e⃗1, ..., e⃗n) est génératrice de E .Par conséquent, le vecteur e⃗n+1 , qui existe bien car m > n+1, s’écrit comme combinaison linéaire des vecteurs e⃗1, ..., e⃗n :contredit la liberté de la famille (e⃗1, ..., e⃗m).
Conclusion : Card(Fl) ⩽ Card(Fg). 1 1 Merci à Christophe Bertault pourla démonstration !⋆

II.2 Dimension d’un espace vectoriel
Définition 6 EV de dimension finie

On dit que E est de dimension finie lorsqu’il admet une famille génératrice constituée d’un nombre fini de vecteurs. En ECG - Mathématiques appli-quées, l’algèbre linéaire se limiteau cas des EV de dimension finie.
Remarque

Tout EV de dimension finie pos-sède une infinité de bases...
☞ Pour info...Théorème 2

Si E admet une base de cardinal fini, alors toutes ses bases sont de cardinal fini et de même cardinal.
⋆ Démonstration : Supposons que E est de dimension finie.
• Puisque E est de dimension finie, E possède une famille génératrice de cardinal fini, noté n. Par conséquent,d’après Propriété 5, toutes les familles libres de E sont de cardinal inférieur ou égal à n.Puisque les bases de E sont en particulier des familles libres, toutes les bases de E sont de cardinal fini, car decardinal inférieur ou égal à n.

Conclusion : toutes les bases de E sont de cardinal fini.
• Considérons maintenant B et B′ deux bases de E .Puisque B est libre et que B′ est génératrice, on a, d’après Propriété 5 :

Card(B) ⩽ Card(B′)
Mais B est génératrice et B′ est libre, donc de la même façon :

Card(B′) ⩽ Card(B)
Par conséquent : Card(B) = Card(B′)
Conclusion : toutes les bases de E ont même cardinal.

⋆

Ce théorème nous permet de donner la définition suivante :
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Définition 7 Dimension d’un EV

Si E est de dimension finie, on appelle dimension de E , notée dim(E ), le cardinal commun de toutes ses bases.
Exemples 8

Les bases canoniques et les di-mensions des espaces vectorielsusuels doivent être parfaitementconnues !
À retenir...E1 dim (R2) = 2, dim (R3) = 3 et dim (Rn) = n.

E2 dim (M2,1(R)) = 2 et dim (Mn,1(R)) = n
E3 dim (Mn(R)) = n2 et dim (Mn,p(R)) = np
E4 dim (R2[x ]) = 3 et dim (Rn[x ]) = n + 1
E5 Sont des espaces vectoriels de dimension infinie : R[x ], C 1(R, R), RN ...

On a les propriétés suivantes souvent utiles :
Propriétés 6

Soient E un espace vectoriel de dimension finie, F un sous-ensemble de E et F une famille de E .
P1 Si F est un sous-espace vectoriel de E , alors F est de dimension finie et dim(F ) ⩽ dim(E ), avec égalitési, et seulement si, F = E .
P2 Si F est une famille libre de E , alors Card(F ) ⩽ dim(E ).
P3 Si F est une famille génératrice de E , alors Card(F ) ⩾ dim(E ).

⋆ Démonstration :
P1. Me paraît non accessible (rapidement) avec nos outils en Mathématiques appliquées (possible en MathématiquesApprofondies).
P2. Supposons que F est une famille libre de E . Considérons B une base de E . Puisque B est génératrice de E ,d’après Propriété 5 : Card(F ) ⩽ Card(B). Or Card(B) = dim(E )... D’où le résultat.
P3. Supposons que F est une famille génératrice de E . Considérons B une base de E . Puisque B est une famillelibre de E , d’après Propriété 5 : Card(F ) ⩾ Card(B). Or Card(B) = dim(E )... D’où le résultat.

⋆

Et une dernière propriété, très utile en pratique :

Une base est une famille libremaximale ou une famille généra-trice minimale...
En gros...

Propriétés 7

P1 Si E est de dimension finie, alors : une famille de vecteurs est une base de E si, et seulement si, elle estlibre et que son cardinal est égal à la dimension de E .
P2 Si E est de dimension finie, alors : une famille de vecteurs est une base de E si, et seulement si, elle estgénératrice de E et que son cardinal est égal à la dimension de E .

⋆ Démonstration : Les implications directes sont immédiates, les implications réciproques ne sont pas accessiblesfacilement (nécessitent le théorème de la base incomplète, vu en Mathématiques Approfondies). ⋆

♣ Méthode 3 ♣ Pour montrer qu’une famille est une base d’un espace vectoriel, trois méthodes sont possibles :
1. montrer qu’elle est libre et génératrice ;
2. montrer qu’elle est libre et de cardinal égal à la dimension de l’espace vectoriel en question ;
3. montrer qu’elle est génératrice et de cardinal égal à la dimension de l’espace vectoriel en question. Quand on connaît la dimensionde l’espace vectoriel étudié, onmet presque toujours en place laseconde méthode !

À retenir...

Exemples 9

E1 Montrons que la famille ((1, 2), (−1, 1)) est une base de R2 .La famille ((1, 2), (−1, 1)) est une famille de vecteurs de R2 qui est :
✓ libre car seulement constituée de deux vecteurs non colinéaires,
✓ de cardinal 2, égal à dim(R2).

Conclusion : la famille ((1, 2), (−1, 1)) est une base de R2 .
E2 Montrons que la famille (x 7−→ 1, x 7−→ 1 + x, x 7−→ 1 + x + x2) est une base de R2[x ].La famille (x 7−→ 1, x 7−→ 1 + x, x 7−→ 1 + x + x2) est une famille de R2[x ] qui est :
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✓ libre car constituée de fonctions polynomiales échelonnées en degré,
✓ de cardinal 3, égal à dim (R2[x ]).

Conclusion : la famille (x 7−→ 1, x 7−→ 1 + x, x 7−→ 1 + x + x2) est une base de R2[x ].
II.3 Coordonnées des vecteurs dans une base

Définitions 8 Coordonnées d’un vecteur dans une base, matrice des coordonnées

Soient E un espace vectoriel de dimension n, B = (e⃗1, ...e⃗n) une base de E et u⃗ ∈ E . Il existe alors un unique
n-uplet (u1, ..., un) ∈ Rn tel que u⃗ = n∑

k=1 uk e⃗k .
D1 Le n-uplet (u1, ..., un) est appelé n-uplet de coordonnées de u⃗ dans la base (e⃗1, ..., e⃗n).

D2 On appelle matrice représentative de u⃗ dans la base B (ou matrice des coordonnées de u⃗ dans la base
B) la matrice de Mn,1(R), notée MatB(u⃗), définie par :

MatB(u⃗) =
u1...

un



Après avoir vu le chapitre surles applications linéaires, nouspourrons dire que l’applicationΦ : E −→ Mn,1(R)
u⃗ 7−→ MatB(u⃗)est un isomorphisme de E dans

Mn,1(R).

☞ Pour info...

Théorème 3 (Isomorphisme de représentation)

Soient E un espace vectoriel de dimension n et B une base de E .
T1 ∀λ, µ ∈ R, ∀u⃗, v⃗ ∈ E, MatB(λu⃗ + µv⃗ ) = λMatB(u⃗) + µMatB(v⃗ )
T2 ∀X ∈Mn,1(R), ∃!u⃗ ∈ E / X = MatB(u⃗)

⋆ Démonstration : Notons B = (e⃗1, ..., e⃗n).
P1. Soient λ, µ ∈ R et u⃗, v⃗ ∈ E .Puisque (e⃗1, ..., e⃗n) est une base de E , il existe des uniques n-uplets (u1, ..., un) ∈ Rn et (v1, ..., vn) ∈ Rn , que nousconsidérons ensuite, tels que

u⃗ = n∑
k=1 uk e⃗k ; v⃗ = n∑

k=1 vk e⃗k

On a ainsi :
λu⃗ + µv⃗ = λ

n∑
k=1 uk e⃗k + µ

n∑
k=1 vk e⃗k

= n∑
k=1 (λuk + µvk )e⃗k

Ainsi, par unicité des coordonnées du vecteur λu⃗ + µv⃗ dans la base B, on a : On a au passage une informationnaturelle mais non moins impor-tante : si u1, ..., un sont les coor-données de u⃗ et v1, ..., vn cellesde v⃗ , alors λu1+µu2, ..., λun +µvnsont celles de λu⃗ + µv⃗ .

Important !

MatB(λu⃗ + µv⃗ ) =
λu1 + µv1...

λun + µvn


Par conséquent : MatB(λu⃗ + µv⃗ ) = λMatB(u⃗) + µMatB(v⃗ )

P2. Soit X =
x1...

xn

 ∈Mn,1(R).
• Existence. Posons u⃗ = n∑

k=1 xk e⃗k .
Ainsi : u⃗ ∈ E et MatB(u⃗) = X . D’où l’existence.

• Unicité. Supposons qu’il existe u⃗, v⃗ ∈ E tels que MatB(u⃗) = X et MatB(v⃗ ) = X .Par conséquent, en notant (u1, ..., un) et (v1, ..., vn) les n-uplets respectifs des coordonnées de u⃗ et v⃗ dans labase B, on a : u1...
un

 =
v1...

vn


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Autrement dit :
∀k ∈ J1; nK, uk = vkD’où :

n∑
k=1 uk e⃗k = n∑

k=1 vk e⃗k

Autrement dit :
u⃗ = v⃗D’où l’unicité.

⋆

Exemples 10

E1 Notons u⃗ = (1, 2) ∈ R2 .
• La matrice des coordonnées du vecteur u⃗ dans la base canonique de R2 est (12) ; autrement dit Matbc(u⃗) = (12).En effet : (1, 2) = 1(1, 0) + 2(0, 1)
• Nous avons vu, Exemples 9 - E1, que ((1, 2), (−1, 1)) est une base de R2 . Dans cette base, que nous notons

B, la matrice des coordonnées du vecteur u⃗ est (10) ; autrement dit MatB(u⃗) = (10).En effet : (1, 2) = 1(1, 2) + 0(−1, 1)
E2 Notons B = (x 7−→ 1, x 7−→ 1 + x, x 7−→ 1 + x + x2). On a vu, dans Exemples 9 - E2, que B est une basede R2[x ].

On sait, d’après Théorème 3 - T2, qu’il existe une unique fonction P ∈ R2[x ] telle que MatB(P) =  1
−12
.

Cette fonction est en fait la fonction Attention à l’ordre des vecteursdans une base !
✘ Attention !

P : x 7−→ 1 × 1− 1 × (1 + x) + 2 × (1 + x + x2)
L’unique fonction polynomiale P ∈ R2[x ] telle que MatB(P) =  1

−12
 est P : x 7−→ 2 + x + x2 .

Cette même fonction admet commematrice de coordonnées dansla base canonique de R2 [x ] la
matrice 212

.

Remarque

III Rang d’une famille de vecteurs
Définition 9 Rang d’une famille de vecteurs

Le rang de la famille (e⃗1, e⃗2, ..., e⃗n), noté rg(e⃗1, e⃗2, ..., e⃗n), est la dimension de Vect(e⃗1, e⃗2, ..., e⃗n). Puisque (e⃗1, e⃗2, ..., e⃗n) est unefamille génératrice finie deVect(e⃗1, e⃗2, ..., e⃗n), cette notiona bien du sens !
✓ Rigueur !

Le rang d’une famille de vecteursest le plus grand nombre de vec-teurs linéairement indépendantsqu’elle contient.
En gros...

Propriétés 8

P1 Si E est de dimension finie p, alors rg(e⃗1, e⃗2, ..., e⃗n) ⩽ min(n, p).
P2 rg(e⃗1, ..., e⃗n) = n si, et seulement si, la famille (e⃗1, ..., e⃗n) est libre.

⋆ Démonstration :
P1. Supposons que E est de dimension finie p. Notons F = Vect(e⃗1, ..., e⃗n). x ⩽ min(n, p) ⇐⇒

 x ⩽ pet
x ⩽ n

À retenir...

• Puisque F est un sous-espace vectoriel de E , on obtient, d’après Propriété 6 - P1, que F est de dimensionfinie et : dim(F ) ⩽ dim(E )Autrement dit : rg(e⃗1, ..., e⃗n) ⩽ p

• Ensuite, par définition, la famille (e⃗1, ..., e⃗n) est génératrice de F . D’où, d’après Propriété 6 - P3 :
Card(e⃗1, ..., e⃗n) ⩾ dim(F )

Autrement dit :
n ⩾ rg(e⃗1, ..., e⃗n)

Conclusion : rg(e⃗1, ..., e⃗n) ⩽ min(n, p).
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P2. Raisonnons par double implication.
⇒ Supposons que rg(e⃗1, ..., e⃗n) = n. Autrement dit, dim (Vect(e⃗1, ..., e⃗n)) = n.Par conséquent, la famille (e⃗1, ..., e⃗n) est :

✓ génératrice de Vect(e⃗1, ..., e⃗n) par définition,
✓ de cardinal égal à dim (Vect(e⃗1, ..., e⃗n)).La famille (e⃗1, ..., e⃗n) est donc une base de Vect(e⃗1, ..., e⃗n) et est donc, en particulier, libre.

⇐ Supposons que la famille (e⃗1, ..., e⃗n) est libre. Étant aussi génératrice de Vect(e⃗1, ..., e⃗n) par définition, lafamille Vect(e⃗1, ..., e⃗n) est une base de Vect(e⃗1, ..., e⃗n) et ainsi :dim (Vect(e⃗1, ..., e⃗n)) = Card(e⃗1, ..., e⃗n)Autrement dit : rg(e⃗1, ..., e⃗n) = n
⋆

♣ Méthode 4 ♣ Pour déterminer le rang d’une famille de vecteurs, on cherche à la réduire (en utilisant les propriétés3) jusqu’à la rendre libre...
Exemple 11

Déterminons le rang de la famille 111
 ,

012
 ,

321
 ,

−2
−2
−2
 ,

000
.

On a :
rg111

 ,

012
 ,

321
 ,

−2
−2
−2
 ,

000
 ,

101
 = dimVect111

 ,

012
 ,

321
 ,

−2
−2
−2
 ,

000
 −2

−2
−2
 = −2111


= dimVect111

 ,

012
 ,

321
 321

 = 3111
−012


= dimVect111

 ,

012


la famille 111
 ,

012
 est libre car

seulement constituée de deux vecteurs noncolinéaires
= 2

IV Rappels et compléments sur l’inversibilité de matrices
Définition 10 Matrice inversible

Soit A ∈Mn(R).On dit que la matrice A est inversible lorsqu’il existe une matrice B ∈Mn(R) telle que AB = In et BA = In .Une telle matrice B est appelée inverse de A.

Maintenant que l’on sait que cettematrice inverse est unique, onpeut lui attribuer une notation :
A−1 , c’est bien !

✎ Notations

Propriété 9 Unicité de l’inverse

Soit A ∈Mn(R).Si A est inversible, alors elle admet une unique matrice inverse.
⋆ Démonstration : Supposons que A est inversible. Considérons B et C deux inverses de A. On a alors : AB = BA =

AC = CA = In . Montrons que B = C .On a :
AB = ACD’où :

BAB = BACMais BA = In , donc :
InB = InCAutrement dit :

B = C
Conclusion : A ne possède qu’une seule matrice inverse. ⋆
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Propriété 10 Inversibilité de la transposée

Soit A ∈Mn(R).La matrice A est inversible si, et seulement si, la matrice tA est inversible. Le cas échéant : (tA
)−1 = t(A−1).

⋆ Démonstration : Par double implication...
⇒ Supposons que A est inversible.Dans ce cas :

tA × t(A−1) = t(A−1A)= tIn= Inet :
t(A−1) × tA = t(AA−1)= tIn= InPar conséquent : tA est inversible et (tA

)−1 = t(A−1).
⇐ On procède de la même façon, ou alors on utilise ⇒ avec B = tA...

⋆

Propriété 11 Caractérisations de l’inversibilité d’une matrice

Soit A ∈Mn(R). Les assertions suivantes sont équivalentes :(a) A est inversible(b) ∃B ∈Mn(R) / AB = In(c) ∃B ∈Mn(R) / BA = In(d) la famille des colonnes de A est une base de de Mn,1(R)(e) la famille des lignes de A est une base de Rn(f ) pour tout Y ∈Mn,1(R), le système linéaire AX = Y , d’inconnue X ∈Mn,1(R), possède une unique solution(g) pour tout Y ∈Mn,1(R), le système linéaire AX = Y , d’inconnue X ∈Mn,1(R), possède au moins une solution(h) le système linéaire AX = 0n,1 , d’inconnue X ∈Mn,1(R), admet 0n,1 comme unique solution
⋆ Démonstration :
• On a déjà de façon immédiate :

✱ (a) =⇒ (b)

✱ (a) =⇒ (c)

✱ (f ) =⇒ (g)

✱ (f ) =⇒ (h)
Ensuite, en notant C1, ..., Cn les colonnes de A, remarquons que si X =

x1...
xn

 ∈Mn,1(R), alors :
AX = x1C1 + ... + xnCn

• Pour (f ) ⇐⇒ (d) :(f ) ⇐⇒ ∀Y ∈Mn,1(R), ∃!X ∈Mn,1(R) / Y = AX
⇐⇒ ∀Y ∈Mn,1(R), ∃!(x1, ..., xn) ∈ Rn / Y = x1C1 + ... + xnCn définition d’une base⇐⇒ (d)

• Pour (g) ⇐⇒ (d) :(g) ⇐⇒ ∀Y ∈Mn,1(R), ∃X ∈ Mn,1(R) / Y = AX
⇐⇒ ∀Y ∈Mn,1(R), ∃(x1, ..., xn) ∈ Rn / Y = x1C1 + ... + xnCn définition d’une famille génératrice⇐⇒

(la famille (C1, ..., Cn) est génératrice de Mn,1(R)) (C1, ..., Cn) est de cardinal n et Propriétés 7 - P2⇐⇒ (d)
• Pour (h) ⇐⇒ (d) :(h) ⇐⇒ ∀X ∈Mn,1(R), (AX = 0n,1 ⇐⇒ X = 0n,1)

⇐⇒ ∀(x1, ..., xn) ∈ Rn, (x1C1 + ... + xnCn = 0n,1 ⇐⇒ x1 = ... = xn = 0) définition de famille libre⇐⇒
(la famille (C1, ..., Cn) est libre) (C1, ..., Cn) est de cardinal n et Propriétés 7 - P1⇐⇒ (d)
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• Pour (a) ⇐⇒ (f ) : Par double implication...
=⇒ Supposons que A est inversible.Soit Y ∈Mn,1(R). Soit X ∈Mn,1(R). On a :

AX = Y ⇐⇒ X = A−1Y
Le système AX = Y , d’inconnue X ∈Mn,1(R) possède donc une unique solution.

⇐= Supposons que pour tout Y ∈Mn,1(R) le système AX = Y admet une unique solution.
L’objectif est de montrer qu’il existe une matrice B telle que AB = BA = In. On veut donc pouvoir passerd’un résultat général sur les colonnes (AX = Y ) à un résultat particulier sur les matrices (AB = In).

✕ Puisque pour tout Y ∈Mn,1(R), le système AX = Y possède une unique solution ; en particulier, pourtout i ∈ J1; nK, si Yi désigne la ième colonne de la matrice In , alors le système AX = Yi possède uneunique solution, notée Bi . En posant B la matrice dont les colonnes sont B1, B2, ..., Bn , alors on a bien
AB = In .

✕ A-t-on BA = In ?Notons C ′1, ..., C ′n les colonnes de BA. Puisque ABA = InA = A, on a :
∀i ∈ J2; nK, AC ′i = CiOr, par hypothèse, pour tout i ∈ J1; nK, le système linéaire AX = Ci possède une unique solution.Mais la i-ème matrice de la base canonique deMn,1(R) (colonne nulle avec un seul 1 en i-ème ligne)

en est solution c’est donc la seule. Par conséquent : ∀i ∈ J1; nK, C ′i =


0...010...0


← i-ème ligne. D’où :

BA = InPar conséquent, A est inversible. A ce stade, on a établi :(a)⇐⇒ (d)⇐⇒ (f )⇐⇒ (g)⇐⇒ (h)
Important !

• Pour (a) ⇐⇒ (e) :On a :
(a) ⇐⇒ (tA est inversible) on a démontré (a) ⇐⇒ (d), appliquée à tA⇐⇒

(la famille des colonnes de tA est une base de Mn,1(R))
⇐⇒ (e)

• Pour (b) =⇒ (g) :Supposons l’existence d’une matrice B ∈Mn(R), que nous considérons ensuite, telle que AB = In .Soit Y ∈Mn,1(R). Remarquons que A(BY ) = ABY = Y , donc BY est solution de l’équation AX = Y , d’inconnue
X ∈Mn,1(R). D’où (g).

On vient d’établir (b) =⇒ (g),mais (g) =⇒ (a), donc(b) =⇒ (a). Et comme onavait déjà (a) =⇒ (b), on obtient(a) ⇐⇒ (b).

Important !

• Pour (c) =⇒ (h) :Supposons l’existence d’une matrice B ∈Mn(R), que nous considérons ensuite, telle que BA = In .

✱ On sait déjà que 0n,1 est solution de AX = 0n,1 .

✱ Soit X ∈Mn,1(R). Supposons que AX = 0n,1 . Ainsi :
B(AX ) = B × 0n,1Autrement dit :

BAX = 0n,1Or BA = In . D’où :
X = 0n,1Par conséquent : le système linéaire AX = 0n,1 possède une unique solution, d’où (h).

On vient d’établir (c) =⇒ (h),mais (h) =⇒ (a), donc(c) =⇒ (a). Et comme onavait déjà (a) =⇒ (c), on obtient(a) ⇐⇒ (c).

Important !

⋆
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