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(CHARTREUX

ALGEBRE LINEAIRE

ESPACES VECTORIELS

INTRODUCTION...

On a bien compris (du moins, je l'espere) que la notion d'ensemble est au centre de l‘étude des mathématiques. Un ensemble est une collection
d'objets.. Mais on voit bien que, dans sa généralité, cette notion est au mieux insuffisante, sinon peu manipulable. On préfére déja les ensembles
d'objets de méme nature : ensemble de nombres, ensemble de fonctions, ensembles de matrices... sur lesquels on peut donc définir des opérations.

Une fois un ensemble d'objets de méme nature constitué, on peut se demander quelle est sa structure. 'étude des structures algébriques mathématiques
est essentielle pour identifier le type d'ensemble.
Plusieurs structures mathématiques existent, en voici trois parmi les plus courantes :

o Introduit en 1893 par Heinrich Weber (1842-1913, allemand) : le groupe. Un ensemble G est un groupe lorsqu'il est muni d'une loi de composition
interne (une opération entre éléments), notée par exemple @, et qui vérifie : G est stable par @, la loit @ est associative, il existe un neutre de
@ appartenant a G, et tout élément de G posseéde un symétrique par @ dans G.

Sont des groupes : (Z,4), (R*, x ), (M,(R),+), lensemble des applications bijectives de E dans E (muni de la composition).. Ne sont pas des
groupes : (N, +), (R, x ), (R*, +)..
St de plus, @ est commutative, on dit que G est un groupe abélien.

e Introduit en 1877 par Richard Dedekind (1831-1916, allemand) : le corps. Un ensemble IK est un corps lorsqu'il est muni de deux lois de
composition internes, notées par exemples @ et x, qui vérifient : IK est stable par @ et x, (K, @) est un groupe abélien, e se distribue sur @, x
possede un neutre dans I, tout élément de IK (excepté le neutre de @) posséde un inverse pour x dans K.

(@, +, x)et(R,+, x)sontdes corps.. Tous les autres ensembles usuels n'en sont pas !

e Manipulé depuis le milieu du XVIIE™ siécle en géométrie, c'est Giuseppe Peano (1858-1932, italien [c'est un peu le roi de l'axiomatisation]) qui
donna une définition rigoureuse et axiomatique d'espace vectoriel en 1888. Cette structure a le bon golt d'étre un bon compromis entre "facile

a manipuler’ et "de nombreux ensembles peuvent étre vus comme des espaces vectoriels’; rajoutons a cela qu'elle peut avoir une interprétation
géométrique... on est face a une excellente structure algébrique !
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POUR BIEN DEMARRER...

1. Définition d’'une matrice inversible. Propriétés.
Sotent n € [2; 400 et A € M,(R).
e Définition. On dit que A est inversible lorsqu'il existe une matrice B € M, (R) telle que AB = BA=1,.
o Propriétés.

* A est inversible si, et seulement si, il existe une matrice B € M,(R) telle que AB =/, ou BA = 1,.
-1

#* Si A est inversible, alors A™" est inversible et (A’W) =A
* Si A est inversible, alors A est inversible et ('%\)71 = '(A”).
% SiUA et B sont inversibles, alors AB est inversible et (AB)™' = B'A™".

2. Conditions suffisantes de non inversibilité d'une matrice.
Sotent n € [2; 400 et A € M, (R).

e Si A contient une ligne (ou colonne) nulle, alors A n'est pas inversible.

e Si l'une des lignes (respectivement colonnes) de A est combinaison linéaire des autres lignes (respectivement colonnes), alors A n'est pas
inversible.

3. Inversibilité des matrices de M5(R).

Soit A = ((z Z) € M5(R). On appelle déterminant de A, noté det(A), le réel défini par det(A) = ad — bc.

Ona:

A est inversible si, et seulement si, det(A) # 0.

_ 1 d —b
A T (,C o )

une matrice triangulaire est inversible si, et seulement si, tous ses coefficients diagonaux sont non nuls

Et le cas échéant :

4. Inversibilité des matrices trianqulaires. . ) ) o )
si, et seulement si, le produit de ses coefficients diagonaux est non nul

1T 1 1 X
5 SoientA= (2 0 —=2]etX=|y|. Résoudre AX =05;.
31 -1 z
Ona:
X+y+ z=
AX = 03,1 Sad 2x — 27 =
x+y— z=0
X+ y+ z=
= —2y—4z=0
LZHL)szw
5« [5 3L, —2y—4z=
x+y+ z=0
—
—y—22=0
X+y =—z
— y = -2z
{ —2z
= X = 722
z
1
Conclusion : l'ensemble des solutions de l‘équation AX =031 est 4z | —2], z€R
1
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Important !
Je fais le choix de sortir du cadre
Ce chapitre est une introduction aux espaces vectoriels. Il précede celui sur les applications linéaires entre espaces ) du programme officiel | Nous al-

el i d . . déia lons un peu plus loin, en prenant
vectoriels qut donnera un tout autre sens aux matrices que nous connatssons deja... une approche différente de celle

suggérée...
Un ensemble non vide £ est un espace vectoriel réel (ou R-espace vectoriel) lorsque :
e £ est munt d'une "addition interne’, notée -+, vérifiant :

vV Vi, VeE i+veE (stabilité de E par addition interne)

VIV weE (U+V)+W=0+(V+ W) (associativité de +)

VNI VeE d+V=V+1 (commutativité de +)

— —
v il existe un élément O € E tel que : VG € E, 7+ 0 =10 (existence d'un neutre pour +)
—>
vV YieE, VeE | d+V=0¢ (existence d'un opposé dans E pour +)
e [ est muni d'une "multiplication externe’, notée -, vérifiant :
IR IR L L % Notations

VvV YAeRVieE A-GeE (stabilité de E par multiplication externe)
On omettra le symbole - pour la

VVApeRVIeE A (p-d)=Ap) -0 (associativité de -) multiplication...

VYAERVYVIVEE A (T+V)=A-T+A-V (distributivité de - sur +)

VYV ApeRYVYIeE A+p)-d=A-0+p-0 (distributivité de - sur addition réelle) — En gros

VY VieE1-d=10 (le réel T est neutre pour ) |4 Un espace vectoriel est un en-
semble muni d'une addition in-

St E est un espace vectoriel réel, alors les éléments de £ sont appelés des vecteurs, et on parle parfois terne et dune multiplication sca-
de scalaires pour désigner les réels de la multiplication externe. laire qui ont les bonnes propriétés

habituelles permettant les cal-
culs |

Puisque E est stable par + et par
., Il est stable par combinaison

., linéaire :
PRoOPRIETES 1 . .
YA uER, Yi,vEE, Aituv < H

Et si c'est vrat pour deux...

Soit £ un espace vectoriel réel.

P1 | Pour tout & € E, & admet un unique opposé, noté —i
—
P L'élément neutre pour + est unique, noté O, appelé vecteur nul de E.

P3| VA€R, Y0 €E, A (=) = (—A)- il = —(A- @)

A=0
P4| YAeR YicE [A-i=0, e 4 ou B
7=0,

P5| Vn e [2+oo], V(A1 ... A,) ER", W(ify, ..., T,) € E", hily + ... + Ayil, € E.

*
DEMONSTRATION : Assez immédiates... “

| EXempPLES 1 I

Les ensembles suivants sont des espaces vectoriels réels :

= Rappel...
R, R%, R? et plus généralement R” pour tout n € N*, munis de l'addition interne usuelle et de la multiplication %

" est lensemble des n-uplets de
réels.

scalaire.

M, 1(R), M54(R) et plus généralement M, 1(R) pour tout n € N*, munis de l'addition interne usuelle sur les
matrices colonnes et de la multiplication scalaire.

E3| L'ensemble des matrices de tailles n x p a coefficients réels M, ,(R), muni de l'addition interne usuelle et de
a multiplication scalaire.

) ) , ) N - . . A i E4 et E5 sont méme un peu plus
Lensemble des matrices carrées de tailles n a coefficients réels M, (R), muni de Uaddition interne usuelle et | 0 BV puisque ces enpsemEles

de la multiplication scalaire. peuvent étre munis d'une multi-
plication interne... Mais de fagon

L'ensemble des fonctions polynomiales a coefficients réels R[x], muni de laddition interne usuelle et de la | générale, ce nest pas le cas pour
multiplication scalaire. un EV.

L'ensemble des fonctions polynomiales de degré inférieur ou égal a n (pour tout n € N*) R,[x] muni de

'addition interne usuelle et de la multiplication scalaire. X Attention !
, . e . . , . , . L'ensemble des fonctions poly-
L'ensemble des fonctions définies sur un intervalle / de R, a valeurs dans R, noté .Z(/, R), muni de l'addition | nomiales de degré égal a n nest

interne usuelle et de la multiplication scalaire. pas un espace vectoriel car : il ne
s . T L, . . " . . contient pas la fonction polyno
L'ensemble des fonctions définies, dérivables deux fois et telles que f” est continue sur un intervalle / de R, | miale nulle, qui est le neutre pour

l'addition

noté ‘52(/, R), muni de l'addition interne usuelle et de la multiplication scalaire.

Dans toute la suite, E est un espace vectoriel réel, n € [2;+oo[ et (€1, &, ..., €,) une famille de vecteurs de E.
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|  SOUS-ESPACES VECTORIELS

4 DEFINITION ET GENERALITES

DEFINITION 2 SOUS-ESPACE VECTORIEL
Important !
Un ensemble F est un sous-espace vectoriel de E lorsque : En particulier 0z € F.
Cela sera utile dans deux cas :
v FCE e pour montrer que F est non
v F est non vide vide ,
e parfois pour montrer qu'un
V VApeR Vi, ve F, Ai+uveF (F est stable par combinaison linéaire) sous-ensemble ln"est pas un sous-
espace vectoriel !

A quot bon cette histoire de sous-espace vectoriel ? Pour la raison qui suit :

PROPRIETE 2

St F un sous-espace vectoriel de E, alors F est un espace vectoriel.

*
DEMONSTRATION : ... N

& METHODE 1 @ Pour montrer qu'un ensemble est un espace vectoriel : = Réflexe !
on montrera que c'est un sous-espace vectoriel d'un espace vectoriel de référence. &t cest toujours ce que l'on fera !

| EXEMPLES 2 I

[E1 {O_E)} et £ sont des sous-espaces vectoriels de E..
E2| Soient A € M,(R) et F = {M € M,(R) | AM = MA}. Montrons que F est un sous-espace vectoriel
de M, (R).

v Par définition : F € M,(R) et M,(R) est un espace vectoriel réel.

v/ La matrice nulle commute avec A, donc 0, € F : F est non vide.
v Soient A, € Ret M, N € F. Montrons que AM + uN € F.
* On a déja M, N € M,(R) et M,(R) est un espace vectoriel, donc AM + uN € M, (R).

* Ensuite : v Rigueur !
; ) . € Etre dans F cest deux choses :
AAM + uN) = AAM + pAN 8tre une matrice de M, (R) et
s ) / M e F, donc AM = MA; et N € F, donc AN = NA commuter avec A.
= AMA + uNA

— (MM + uN)A

Par conséquent :
M+ uN e F

|C0nclusl0n : [ est un sous-espace vectoriel de M, (R) (donc F est un espace vectoriel réel).

Soit F = {f € €*(R,R) | ¥x € R, f"(x) — 3f'(x) + 2f(x) = 0}. Montrons que F est un sous-espace vectoriel
de ¥“(R R).
v Par définition : F € ¥*(R,R) et °(R, R) est un espace vectoriel réel.
v La fonction nulle appartient a F : F est non vide.
v Soient A,y € Retf, g € F. Montrons que Af 4+ g € F.
% Onadéjaf,gc € (RR) et €°(R,R) est un espace vectoriel, donc Af + pg € €*(R,R).

* Ensuite, pour tout x € R, par linéarité de la dérivation :
(A + 1) (x) = A + ug) (x) + 2(Af + pg)(x) = (A" + pg”)(x) — (A" + ug')(x) + 2(Af + pg)(x)
M (x) + pg” (x) — 3AF(X) — 3pg’(x) + 2Af(x) + 2;/q(x)/
= A(F"(x) = 3F'(x) + 2f(x)) + u(g"(x) — 3¢"(x) + 2g(x))
=0 / f,.geF

linéarité de l'évaluation en x

Par conséquent :
M+ugeF

. . 5D . ;
|Concluston : F est un sous-espace vectoriel de €°(R, R) (donc F est un espace vectoriel réel). |

E L'ensemble F = {P € Ry[x] /| P(0) = 1} n'est pas un sous-espace vectoriel de R;[x] car il ne contient pas la
fonction polynomiale nulle.

Les sous-espaces vectoriels de R? sont {(0,0)}, R” ainsi que les droites passant par (0,0).
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Soient F et G deux sous-espaces vectoriels d'un espace vectoriel réel E£. Montrons que F NG est un sous-espace
vectoriel de E.
v Puisque F et G sont des sous-espaces vectoriels de £, ona F C E et G C E.Donc FNG C E.

—>

v Puisque F et G sont des sous-espaces vectoriels de £, on a ()i e F er 0_t> e G AnsiOre FNG:FNG
est non vide.
v Soient A,y € Retd,ve F NG Montrons que Ad + puv € F NG,
* On a déja ,V € E et E est un espace vectoriel, donc AT + pv € E.
* De la méme facon, AT+ pv € F et Ad+ pv € G.

Par conséquent :
A+pwe FNG

Conclusion : F N G est un sous-espace vectoriel de £.

2  SOUS-ESPACES VECTORIELS ENGENDRES

Voyons un cas particulier de sous-espace vectoriel...

DEFINITION 3 COMBINAISON LINEAIRE

Soit € E. On dit que I est combinaison linéaire des vecteurs &, &, ..., &, lorsqu'il existe des réels Ay, A, ..., A,

n
tels que 07 = Z)\ié’,.
i=1

| EXempPLES 3 |

1 1
Sotent X = [ 0| et Y = | 1] deux matrices de M5(R).
0 1 & Méthode !
-3 Soit on remarque une combi-
Montrons que U = | 2 | est combinaison linéaire de X et Y. naison linéaire simple... Soit on
> résout U = aX + bY, d'inconnues
a,beR

On remarque que :
U=2Y—-5X

|Conclusion : U est combinaison linéaire de X et Y.

1
Montrons que V = | 2 | n'est pas combinaison linéaire de X et Y.
3

Sotent a,b € R. On a :

1 1 1
V =aX+bY — 2l =al|0]+b[1
3 0 1
a+b=1
= b=2
b=3
Ce systeme ne possede aucune solution.
|C0nclusi0n 1V n'est pas combinaison linéaire de X et Y.
a+b
L'ensemble des combinaisons linéaires de X et Y est : b , (a,b) R’
b

'ensemble de toutes les combinaisons linéaires des vecteurs &y, &5, ..., €, est un sous-espace vectoriel de E.

*
DEMONSTRATION :

Notons F l'ensemble de toutes les combinaisons linéaires des vecteurs &1, &5, ..., ,. Autrement dit :
1 2 n

F= {Zx@, (A, A € R”}
k=1
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v Soit 4 € F. Il existe des réels Aq, ..., A,, que nous considérons ensuite, tels que 7 = Ak €.

n

Puisque &y, ..., &, € E et que E est un espace vectoriel : > A€ € E. Autrement dit : 7 € E.
k=1

Par conséquent : F C E.

— " —
v OnaOf = ZO x €. Ainst O € F : F est non vide.
k=1
v Solent a,b € Ret &,V & F. Montrons que ail + bV € F.

n

Puisque & € F, il existe des réels Aq, ..., A,, que nous considérons ensuite, tels que 7 = Z)“ e.
k=1
n

Puisque vV € F, il existe des réels (1, ..., t1,, que nous considérons ensuite, tels que vV = Z///\ e.
k=1

Ainsi :

n n
ail + bV =a > A6+ b > Ly B
k=1 k=1
1

I

(aAx + bp)éx
k=1

Or, pour tout k € [1;n], ar + by € R..
Par conséquent : ai + bV est combinaison linéaire des vecteurs &, ..., €,. Autrement dit :

ad+bveF

Conclusion : F est un sous-espace vectoriel de E. N

DEFINITION 4 SOUS-ESPACE VECTORIEL ENGENDRE PAR UNE FAMILLE DE VECTEURS

L'espace vectoriel des combinaisons linéaires des vecteurs &, &, ..., &, est appelé sous-espace vectoriel engendré
. S 2 = . 2 o "
par la famille (&, &, ..., &,), et noté Vect(éy, &5, ..., €,).

& METHODE 2 & Pour démontrer que F est un sous-espace vectoriel de E :
on pourra tenter de l'‘écrire comme le sous-espace vectoriel engendré par une famille de vecteurs de E.

| ExempLE 4 |

Considérons F = { (

a a+b

0 o— b) e My(R) [/ (a,b) R2]»4 Montrons que F est un sous-espace vectoriel de M»(R).

RZ}

:{(7“ 1)+b(8 jw) e,w(R)/(u,b)eRi}
, 11 0 1

v ([ 1) (6 )

Puisque (1 1 ) , (8 jW ) € M5 (R), on en déduit que F est un sous-espace vectoriel de M;(R).

m

a a—b>b

F:{(U “*b) e Mu(R) / (a, b)

PROPRIETES 3

Soient &, &5, ..., €,,1 des vecteurs de E.

St €,41 est une combinaison linéaire de &y, &5, ..., €,, alors Vect(éy, &5, ..., €,41) = Vect(&, &, ..., E,).

N

_
En particulier : Vect(éy, €5, ..., €,,0F) = Vect(éy, &5, ..., €,).

Yo, o, ..., a, € R*, Vect(oq &, 85, ..., a,8,) = Vect(éy, &, ..., &,).

Yo, o, ..., an—1 €R, Vect(éy,8,,...,8,) = Vect | &,6,,..., 8, + Zoqe”,

*
DEMONSTRATION : Pas trés difficiles, ni trés intéressantes... .
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= Pour info...
On peut aisément démontrer que
cest le plus petit (au sens de
l'inclusion) espace vectoriel conte-
nant les vecteurs &4, &>, ..., &,.

Cas particulier

Le sous-espace vectoriel engendré
par un unique vecteur est l'en-
semble de ses multiples.

En gros...

Ecrire un ensemble comme un
ssev engendré équivaut a expli-
citer cet ensemble. S'il est déja
donné de fagon explicite, il n'y a
plus grand chose a faire...




L'intérét de ces deux propriétés est de pouvoir réduire’ la famille de vecteurs qui engendre Vect(...).

| EXEMPLE 5 I

[ emaminpacr )= (3 4o (3] +2(7) 1ovacr}

—_——
O = = NN NN
—_— — — .

— ——

- o = O

—_—

—_—

—_—

- w

—_

|

—

NN

P

|

N

—_—

- O

—_

|

Il semble maintenant que l'on ne puisse plus simplifier la famille obtenue...

I BASE ET DIMENSION

[l.1 FAMILLE LIBRE, GENERATRICE, BASE

DEFINITIONS 5

On dit que la famille (&, €, ..., &,) est une famille génératrice de E lorsque

VieE, N, ... A) R U= Z)tké—‘)k

= . . = =

Autrement dit : (&1, &, ..., &,) est une famille génératrice de E lorsque E = Vect(éy, &5, ..., €,).

On dit que la famille (&7, &5, ..., &,) est une famille libre de E lorsque :

ik b d) ERL (B b+ 08 =0f = (Vie [1in], 4 =0))

N

_
Autrement dit : (€7, &, ..., &,) est libre lorsque la seule combinaison linéaire donnant O est la combinaison
linéaire triviale.

St la famille (&4, &5, ..., €,) est libre, on dit que les vecteurs &, &, ..., &, sont linéairement indépendants.

On dit que la famille (&, &, ..., &,) est une base de E lorsque

Vi€ E, A, A) ER [T =) Aé

k=1
| EXeEmPLES 6 I
Commencons par donner (sans justifier) quelques bases usuelles :
E La famille ((1,0),(0,1)) est une base de R”.
1 0 1 0 0
E2 La faleLe , est une base de M, 1(R). La famille 0O, (1].,1]0 est une base de M34(R).
0 0 1
0
0
E3 La famille ] est une base de M, 1(R).
0
1
1 0 0 0 0
E4 La famille ( O 0) (W O) , (O 1)) est une base de M;(R).

E5 | La famille (x —— 1 X+ x, x> x’) est une base de Ry[x]

[E6 | La famille (x> T, x> x, .., x+—— x") est une base de R,[x].

Montrons que la famille ( (;) , (_11) ) est une famille libre de M;1(R).

Soient a, b € R. Supposons a (;) - b (?W) =031.
Or :

s (TN 2o oo b=y
= U —
“12) TP 2 20+b=0
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Remarque

L'ensemble étudié est un sous-
espace vectoriel de M5 1(R),
puisqu'il est l'espace vectoriel
engendré par une famille de vec-
teurs de M 1(R).

Vocabulaire

Une famille qui n'est pas libre est
liée. Cest le cas lorsqu'un de ces
vecteurs est combinaison linéaire
des autres; ou quand il existe une
combinaison linéaire non triviale
donnant le vecteur nul.

clest la base !

X Attention | ——
+7On dit une base et pas la base,

Vocabulaire

Toutes les bases données ci-
dessus sont les bases canoniques
des EV mentionnés. Ce sont les
bases naturelles dans lesquelles
on travaille.




a—
—
Ly « L —2L4

aq =
—
{b

Donc:a=b=0.

b=20
3b=0

N —

Conclusion : la famille ( ( ) , (711) ) est une famille libre de M, (R).

La famille ( (;) , (711) , (?) ) est-elle une famille libre de M,4(R)?

On remarque que
AN N 2
21\ 1

4

Autrement dit :

Conclusion : la famille ( (;) ) (711> ) (f) ) n'‘est pas une famille libre de M, 1(R).

Montrons que la famille

Or :

1
1
1
—1 1
Soient a, b, c € R. Supposons a < +b | 1 ) +c| 1| =034
0 1

est une famille libre de M3;(R).

1 —1 1 a
alO0|+b| 1T |+c|[1] =03, — a+b
0 0 1 a+b+c=0
a=0
= b=0
c=0
Donc:a=b=c=0.
1 1 1
Conclusion : la famille 0 1 1 est une famille libre de M3;(R).
0 0 1

E10|Notons fiix— 1, H:ix— T+xetf: x— 1+x+x%
Montrons que la famille (f;, 5, f3) est une famille libre de Ro[x].
Soient a, b, c € R. Supposons afy; + bf, + cf3 = 0.

Autrement dit, on a :

VxR, T4+a(1+x)+b1+x+x)=0

On a ainsti :
Vx € R, 0+b+(+(b+()x+(x2:0

Autrement dit :
(@+b+cleg+ (b+c)eg+ce; =0

\ )
Oliey:x—> 1 e : x—> xeter: x— x°.

Or (@0, e, e;) est la base canonique de R;[x] cette famille est donc en particulier libre.

Par conséquent :
a+b+c=0; b+c=0; c=0

Dot immédiatement :
a=b=c=0

Conclusion : la famille (fy, f, f3) est une famille libre de Ry[x].
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indépendants lorsqu'ils sont non
colinéaires.

A retenir... —————
Deux vecteurs sont linéairement

A retenir... ———
Un famille de matrices colonnes
dont les coefficients sont échelon-
nés est toujours Libre.

Confusion d’objets !
Attention, il s'agit d'une éqgalité de
fonctions !

miales échelonnées en degré est
ibre.

A retenir... —————
Une famille de fonctions polyno-
L




Des choses bien utiles :

e Une famille contenant le vecteur nul est lice.

e Une famille contenant deux fois le méme vecteur est liée.

e Une famille dont l'un des vecteurs est une combinaison linéaire des autres est liée.

o Une famille formée d'un seul vecteur est libre si, et seulement si, ce vecteur est non nul.

e Une famille formée uniquement de deux vecteurs est libre si, et seulement si, ces deux vecteurs ne
sont pas colinéaires.

e Une famille de vecteurs de M, 1(R) ou de R" dont les coefficients sont échelonnés est libre.

e Une famille de fonctions polynomiales échelonnées en degré est libre.

e Une sous-famille d'une famille libre est libre.

Les définitions précédentes impliquent naturellement la propriété suivante, qui sera tres utile en pratique :

PROPRIETE 4

Une famille de vecteurs de E est une base si, et seulement si, elle est libre et génératrice.

*

DEMONSTRATION :
Soient n € [2;4o0f et (€, ..., €,) une famille de vecteurs de E. Montrons que (&1, ..., €,) est une base de E si, et
seulement si, (&, ..., €,) est une famille libre et génératrice de E.

Procédons par double implication.

Supposons que (&1, ..., &,) est une base de E.
* Montrons que (&4, ..., €,) est génératrice de E. Soit & € E. Puisque (&, ..., €,) est une base de E, il existe

n
un unique n-uplet de réels (A, ..., A,) tel que & = Z)‘* Bk
1

Dot le résultat...

Conclusion : (€1, ..., €,) est génératrice de E.
n
N — . . | | - N g
* Montrons que (&1, ..., &,) est libre. Soient Ay, ..., A, € R. Supposons g A€ = 0p.
k=1
n
it N . N — . .
Or a aussi O = E 0 x é. Et la famille (&1, ..., €,) est une base de E, donc en particulier le vecteur nul
k=1
de E se décompose de fagon unique en combinaison linéaire des vecteurs &, ..., &,.

Par conséquent, les deux combinaisons linéaires exhibées sont identiques... D'ou :
Vk e [1;n], &% =0
Conclusion : la famille (&, ..., &,) est libre.
Supposons que (€7, ..., €,) est libre et génératrice. Montrons :

n
Vi€ E, Ak, ... 4) ER [ T=) Aé
k=1

Soit 7 € E.

* Puisque (&4, ..., €,) est génératrice de E, il existe (A, ..., A,) € R", que nous considérons ensuite, tel que
n
. -
u = E Ak €.
k=1

N

* Supposons qu'il existe (u, ..., 1) € R", que nous considérons ensuite, tel que 7 = LUk Ek.

Ainst :

n n
) = S
A€ = Hik €k
k=1 k=1

Dot :
n y ) N
Z(/LA — /I/\)F‘k = O/:
k=1
Or la famille (&1, ..., é,) est libre dans E, on obtient donc :

Vke[n], = =0

Autrement dit :
Vk e [1;n], A = 1

D'ou le résultat.

On a ainsi établi :

n
Ak, ) ERT [T =) Aé
k=1

Conclusion : la famille (&, ..., &,) est une base de E.

CHAPITRE 18 - Page 9/17

= Pour info...

En fait, il existe un théoreme (HP)
qut affirme que :

e de toute famille génératrice,

4 on peut extraire une sous-famille

libre et génératrice...

o toute famille libre peut étre
complétée en une famille libre et
génératrice...

& Méthode !

Pour démontrer l'unicité, deux
méthodes :

e Par l'absurde : supposer qu'il
en existe deux différents et abou-
tir a une absurdité.

e Supposer lexistence de deux, et
montrer qu'ils sont égaux.

Remarques

e Le caractere ‘générateur’ équi-
vaut a l'existence d'une décompo-
sition en combinaison linéaire.

e e caracteére 'libre" équivaut

a l'unicité (st existence) d'une
décomposition en combinaison
linéaire.




| EXempLES 7 |

Donnons une base de l'espace vectoriel F étudié dans Exemple 4.
On avait obtenu :
11 0 1
Pl ) (o )
1 1 0 1
D ~A H -+ .
Par conséquent, la famille ( (1 1) , (O 71) ) est :
v/ génératrice de F par définition,
v libre car seulement constituée de deux vecteurs non colinéaires.
. : 11 0 1
Conclusion : la famille 11l est une base de F.
1T 1 2
Considérons A= [3 1 4| et F = [X & M5:(R) | AX = 05}
1 0 1
Montrons que F est un sous-espace vectoriel de M3 ;(R) et déterminons-en une base.
X
Soit X = |y | €M;34(R).Ona:
z
XeF = AX = 03
X+y+22=0
— Xx+y+4z=0
+ z=0
X+ y+2z=0
= —2y—2z=0
Ly 1y — 31
L3« L3 — Ly y— z=20
x+y+2z=0
—
—y— z=0
X+y = -2z
S —Z
= {e(ﬂngzzz
— X =z 71
1
Par conséquent :
—1
F=4z|-1], z€R
1
—1
= Vect —1
1
—1
Puisque | —1 | € M3;(R), on en déduit que F est un sous-espace vectoriel de M54(R).
1
—1
De surcrolt, la famille —1 est une famille de F qui est :
1
v génératrice de F par définition,
v libre car constituée d'une unique vecteur non nul.
—1
Conclusion : la famille —1 est une base de F.
1
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PROPRIETE 5

St . est une famille libre de E et Z, est une famille génératrice de E, alors Card(#) < Card(Z).

FDEMONSTRATION - Raisonnons par l'absurde et supposons qu'il existe une famille libre .%; et une famille génératrice %,
de E telles Card(.#) > Card(.#,). Notons n = Card(.%) et m = Card(.%,) ainsi que & = (&, ..., &) et Fy = (fr, .. ).

e Puisque (fq, I?,,) est génératrice de £ et que & € E, il existe des réels Ay, ..., A,, que nous considérons ensuite,
tels que & = /\11?1 + ... +)\,fn.
Au moins un de ces A; est non nul, stnon on aurait & = O_E) et la famille .%; ne serait alors pas libre.
Quitte a réordonner les vecteurs de %, supposons que A, # 0.
On obtient alors :

f, = )T()wﬁ o Apaby g — &)

Par conséquent :

La famille (71, 1?,7,1, &) est donc génératrice de E.

e De la méme fagon, il existe des réels Ay, ..., A,—1 et py, que nous considérons ensuite, tels que &, = /\17?1 + ...+
An—tpt + €5
Au moins un des A; est non nul, sinon &, serait multiple de & et donc la famille .%; ne serait pas libre...

En procédant comme ci-dessus, on obtient finalement (quitte a réordonner les vecteurs de (f, ..., f,-1)) que la Remarque
famille (fy, ..., f,_2, &1, &) est génératrice de E. On pourrait démontrer par ré-
0 . L currence finie que pour tout
e On poursuit ainst... k € [0; n], E est engendré par k
Au bout de n étapes de ce raisonnement, on obtient que la famille (&, ..., €,) est génératrice de E. ;‘:t;”s de Fy et n — k vecteurs
y — . . . Iy . . . s — (B8
Par conséquent, le vecteur &,,4, qui existe bien car m > n+1, s‘écrit comme combinaison linéaire des vecteurs &, ..., &, :
contredit la liberté de la famille (&4, ..., €).
Conclusion : Card(.%;) < Card(.%,). ! ! Merct a Christophe Bertault pour
l g P p
* | la démonstration !

[ DIMENSION D'UN ESPACE VECTORIEL

DEFINITION 6 EV DE DIMENSION FINIE Remarque ———

En ECG - Mathématiques appli-

On dit que £ est de dimension finie lorsqu'il admet une famille génératrice constituée d'un nombre fini de vecteurs. quées, l'algebre linéaire se limite
au cas des EV de dimension finie.

Tout EV de dimension finie pos-
sede une infinité de bases...

St E admet une base de cardinal fini, alors toutes ses bases sont de cardinal fini et de méme cardinal.

*
DEMONSTRATION : Supposons que E est de dimension finie.

e Puisque E est de dimension finie, £ possede une famille génératrice de cardinal fini, noté n. Par conséquent,
d'aprés Propriété 5, toutes les familles libres de £ sont de cardinal inférieur ou égal a n.
Puisque les bases de £ sont en particulier des familles libres, toutes les bases de E sont de cardinal fini, car de
cardinal inférieur ou égal a n.
Conclusion : toutes les bases de £ sont de cardinal fini.

e Considérons maintenant # et %’ deux bases de E.
Puisque 2 est libre et que Z’ est génératrice, on a, d'aprés Propriété 5 :

Card(#) < Card(#')
Mais & est génératrice et B’ est libre, donc de la méme facon :
Card(#') < Card(£)

Par conséquent :
Card(%) = Card(B)

Conclusion : toutes les bases de £ ont méme cardinal.
*

Ce théoreme nous permet de donner la définition suivante :
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DEFINITION 7 DIMENSION D'UN EV

St E est de dimension finie, on appelle dimension de E, notée dim(E), le cardinal commun de toutes ses bases.

| EXEMPLES 8 I

A retenir...
2 3 .
| E1 dim (R ) 2, dim (R ) J et dim (Rn) =17 Les bases canoniques et les di-
| - . o mensions des espaces vectoriels
3_2 dim (MN(R ) =2 etdim ('/\/l”'1 (R)) =10 usuels doivent étre parfaitement
[E3 | dim (M,(R)) = n" et dim (M,,(R)) = np connues |
4| dim (Rz[X]) = 3etdim (Ryx]) =1+ 1
5| Sont des espaces vectoriels de dimension infinie : R[x], "' (R, R), R .
On a les propriétés suivantes souvent utiles :
Soient E un espace vectoriel de dimension finie, £ un sous-ensemble de E et .% une famille de E.
St F est un sous-espace vectoriel de £, alors F est de dimension finie et dim(F) < dim(E), avec égalité
si, et seulement si, F = E.
St .Z est une famille libre de E, alors Card(.#) < dim(E).
St .Z est une famille génératrice de E, alors Card(.#) > dim(E).
DEMONSTRATION :
. Me paralt non accessible (rapidement) avec nos outils en Mathématiques appliquées (possible en Mathématiques
Approfondies).
P2. Supposons que .Z est une famille libre de E. Considérons # une base de E. Puisque & est génératrice de E,
d'aprées Propriété 5 : Card(#) < Card(#). Or Card(#) = dim(E).. Dot le résultat.
P3. Supposons que .# est une famille génératrice de E. Considérons % une base de E. Puisque Z est une famille
libre de £, d'aprés Propriété 5 : Card(.#) > Card(#). Or Card(#) = dim(E)... D'ou le résultat.
]
Et une derniere propriété, tres utile en pratique :
PROPRIETES 7
St E est de dimension finie, alors : une famille de vecteurs est une base de E si, et seulement si, elle est
libre et que son cardinal est égal a la dimension de E. En gros...
Une base est une famille libre
Si E est de dimension finie, alors : une famille de vecteurs est une base de E si, et seulement si, elle est maximale ou une famille généra-
génératrice de E et que son cardinal est égal a la dimension de E. trice minimale..
*
DEMONSTRATION : Les implications directes sont immédiates, les implications réciproques ne sont pas accessibles
facilement (nécessitent le théoréme de la base incompléte, vu en Mathématiques Approfondies). N
& METHODE 3 & Pour montrer qu'une famille est une base d'un espace vectoriel, trois méthodes sont possibles
1. montrer qu'elle est libre et génératrice;
2. montrer qu'elle est libre et de cardinal égal a la dimension de l'espace vectoriel en question; A reteni
— retenir...
3. montrer qu'elle est génératrice et de cardinal égal a la dimension de l'espace vectoriel en question. Quand on connatt la dimension
de l'espace vectoriel étudié, on

met presque toujours en place la
| EXEMPLES 9 I seconde méthode !

Montrons que la famille ((1,2), (-1, 1)) est une base de R%.
La famille ((1,2), (=1, 1)) est une famille de vecteurs de R* qui est :

v libre car seulement constituée de deux vecteurs non colinéaires,
v de cardinal 2, égal & dim(R?).

Conclusion : la famille ((1,2),(—1,1)) est une base de R’.

Montrons que la famille (x — 1, x — 1+ x, x —> 1+ x —|—x2) est une base de Ry[x].

La famille (x — 1,x — 1T+ x,x —> 14 x + x*) est une famille de Ry[x] qui est :
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v libre car constituée de fonctions polynomiales échelonnées en degré,

v de cardinal 3, égal a dim (R[x]).

Conclusion : la famille (X — I x— T4+ x,x— 14+ x+ x’”) est une base de Ry[x|

[.3 COORDONNEES DES VECTEURS DANS UNE BASE

DEFINITIONS 8 COORDONNEES D'UN VECTEUR DANS UNE BASE, MATRICE DES COORDONNEES

Soient E un espace vectoriel de dimension n, Z = (&;,...6,) une base de E et & € E. Il existe alors un unique

n
n-uplet (uq, ..., u,) € R" tel que & = Z Ug6.
k=1

Le n-uplet (uy, ..., u,) est appelé n-uplet de coordonnées de & dans la base (&, ..., &,).

On appelle matrice représentative de & dans la base Z (ou matrice des coordonnées de & dans la base
) la matrice de M ,,1(R), notée Matg (i), définie par :
Uy
Matg(0) =

Up

— = Pour info...

Apres avoir vu le chapitre sur
les applications linéaires, nous
pourrons dire que l'application

o | E — MR

THEOREME 3 (ISOMORPHISME DE REPRESENTATION)

Soient E un espace vectoriel de dimension n et 2 une base de E. 7 — Matg(d)
YA uER, Vi, 7 € E, Matg(AT + u?) = Mat g (d) + pMat(7) {55 un iomorphisme de £ dans
n1 .

¥X € M, 1(R), 37 € E | X = Mat(d)

*
DEMONSTRATION : Notons & = (€1, ..., &,).

P1. Soient A,y e Retd,ve E.
Puisque (&, ..., &,) est une base de E, il existe des uniques n-uplets (uq, ..., u,) € R" et (v, ..., v,) € R", que nous
considérons ensuite, tels que

n n
0= E Ug€r V= E ngk
k=1 k=1
On a ainsi :
n n
A+ pv = A E Ui + E Vi B
k=1 k=1
n
= (Aug + pve) & Important !
k=1 On a au passage une information
naturelle mais non moins impor-
Ainsi, par unicité des coordonnées du vecteur Ad + pi dans la base %, on a : tante : st uy, ..., u, sont les coor-
données de i et vy, ..., v, celles
AUt 4+ v de v, alors Auqy+pua, ..., Aup+pv,
aad sont celles de AT + pv.
Mat g (AT + pv) =
Aup + v,

Par conséquent :
Matg (AT + pvV) = AMMatg(d) + pMat (V)
X1
P2. Soit X = | 1 | € M,1(R).
Xn
e Existence. Posons &7 = Zxkgk‘

k=1
Ainst . 7 € E et Matg(d) = X. D'ou l'existence.

e Unicité. Supposons qu'il existe @,V € E tels que Matg(d) = X et Matg(V) = X.
Par conséquent, en notant (uq, ..., u,) et (v, ..., v,) les n-uplets respectifs des coordonnées de i et V dans la

base %, on a :
uy 4

u n Vn
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Autrement dit :
Vk e [1;n], ux=w

Dol :
n n
S S
E U€p = § Vi €k
k=1 k=1

Autrement dit :
ag=v

Dot unicité.
i
| EXEMPLES 10|

Notons @ = (1,2) € R?.

) , R . 1 . N 1
e |a matrice des coordonnées du vecteur & dans la base canonique de R? est (2) ; autrement dit Maty, (07) = ( ) .

2
En effet :
(1,2) =1(1,0) + 2(0, 1)

e Nous avons vu, Exemples 9 - E1, que ((1,2), (-1, 1)) est une base de R?. Dans cette base, que nous notons

1) ; autrement dit Matg () = (1 )

A, la matrice des coordonnées du vecteur i est (0 0

En effet :
(1,2) =1(1,2) + 0(—1,1)

Notons % = (x — I x— T+ x,x— 14 x +XZ)A On a vu, dans Exemples 9 - E2, que # est une base
de Ry[x].

1
On sait, d'aprés Théoréme 3 - T2, qu'il existe une unique fonction P € R;[x] telle que Matg(P) = | —1
2 X Attention !
Cette fonction est en fait la fonction %ttentlon a lordre des vecteurs
dans une base !
Pixr—1x1=1x(14x)+2x(1+x+x% Remarque
Cette méme fonction admet comme
1 matrice de coordonnées dans
L'unique fonction polynomiale P € Ry[x] telle que Matg(P) = [ —1] est P:x+— 2 + x 4 x° la base Cagomq”e de Rofx] la
2 matrice |1
2
1
Il RANG D'UNE FAMILLE DE VECTEURS
DEFINITION 9 RANG D'UNE FAMILLE DE VECTEURS v Rigueur !

Puisque (&7, &, ..., €,) est une
famille génératrice finie de
Vect(é1, €2, ..., €,), cette notion
a bien du sens !

) 4

Le rang de la famille (&, &, ..., &,), noté rq(€4, &,, ..., €,), est la dimension de Vect(&, &, ..., &,).

PROPRIETES 8

En gros...

St E est de dimension finie p, alors rg(&1, €, ..., €,) < min(n, p). Le rang d'une famille de vecteurs
est le plus grand nombre de vec-
rg(é, ..., €,) = n si, et seulement si, la famille (€4, ..., &,) est libre. teurs linéairement indépendants
qu'elle contient.
* A .
DEMONSTRATION A retenir...
- . . o , = . x <
P1. Supposons que E est de dimension finie p. Notons F = Vect(éy, ..., €,). X < min(n, p) { o P
e Puisque F est un sous-espace vectoriel de £, on obtient, d'aprées Propriété 6 - P1, que F est de dimension xson

finte et :
dim(F) < dim(E)

Autrement dit :

e Ensuite, par définition, la famille (&, ..., €,) est génératrice de F. D'ou, d'apres Propriété 6 - P3 :
Card(éy, ..., €,) = dim(F)

Autrement dit :
n>=rq(é, .. &)

Conclusion : rg(€y, ..., &,) < min(n, p).
g f
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P2. Raisonnons par double implication.

Supposons que rg(é}, ..., &,) = n. Autrement dit, dim (Vect(é, ..., €,)) = n.

Par conséquent, la famille (&4, ..., &,) est :
v génératrice de Vect(é, ..., &,) par définition,
v de cardinal égal a dim (Ve(“r(e], @’”)).
La famille (&1, ..., €,) est donc une base de Vect(éy, ..., €,) et est donc, en particulier, libre.
Supposons que la famille (&7, ..., €,) est libre. Etant aussi génératrice de Vect(éy, ..., €,) par définition, la
famille Vect(é, ..., €,) est une base de Vect(é, ..., €,) et ainsi :
dim (Vecl(a, 5,1)) = Card(é, ..., 6,)

Autrement dit :

>

rg(é1,....€,) =n

]

& METHODE 4 # Pour déterminer le rang d'une famille de vecteurs, on cherche a la réduire (en utilisant les propriétés
3) jusqu'a la rendre libre...

| ExempLE 11 I

1 0 3 -2 0
Déterminons le rang de la famille 11,111,121, -2 0
1 2 1 -2 0
Ona:
0 3 —2 0 1 1 0 3 —2 0
rq .11, 02).1-2]).(0].,10 = dim | Vect < 11, <W 21, 0-2].10 o /
2 1 -2/ \o 1 1 2 1 -2/ \o <)) - m
1 0 3 ) - 1
= dim | Vect 11,11 2 ,
JRUR =00
w () \1/ 1 ‘Z/
= dim | Vect < 11, <W 3 ~
1 2 ) la famille ((W) ) (W) ) est libre car
=2 \ ,1 2) )
seulement constituée de deux vecteurs non
colinéaires

IV RAPPELS ET COMPLEMENTS SUR L'INVERSIBILITE DE MATRICES

DEFINITION 10 MATRICE INVERSIBLE

Soit A € M,(R).
On dit que la matrice A est inversible lorsqu'il existe une matrice B € M, (R) telle que AB =1, €T BA=I,.
Une telle matrice B est appelée inverse de A.

PROPRIETE 9 UNICITE DE L'INVERSE
. %, Notations
Soit A € M, (R). : B
. . . i X . Maintenant que l'on sait que cette
St A est inversible, alors elle admet une unique matrice inverse. matrice inverse est unique, on

peut lut attribuer une notation :
A", Cest bien |

*
rDEMONSTRATION : Supposons que A est inversible. Considérons B et C deux inverses de A. On a alors : AB = BA =
AC = CA = I,. Montrons que B = C.

Ona:

AB = AC
Dot :

BAB = BAC

Mais BA = |, donc :

IL,B=1,C
Autrement dit :

B=C

Conclusion : A ne posséde qu'une seule matrice inverse. j
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PROPRIETE 10 INVERSIBILITE DE LA TRANSPOSEE

Soit A € M,(R).

La matrice A est inversible si, et seulement si, la matrice ‘A est inversible. Le cas échéant : (’A)_1 = '(A’1 )

*
DEMONSTRATION : Par double implication...

Supposons que A est inversible.
Dans ce cas :

et

Par conséquent : ‘A est inversible et (’A)71 =(AT").
On procéde de la méme facon, ou alors on utilise avec B="A..

]
PROPRIETE 11 CARACTERISATIONS DE L'INVERSIBILITE D'UNE MATRICE

Soit A € M, (R). Les assertions suivantes sont équivalentes :

)

) 3IBe M,(R) | AB=1,

) 3B e M,(R) | BA=1,

(d) la famille des colonnes de A est une base de de M, 1(R)

(e) la famille des lignes de A est une base de R"
) pour tout Y € M, 1(R), le systeme linéaire AX =Y, d'inconnue X € M, 1(R), possede une unique solution
) pour tout Y € M, 1(R), le systeme linéaire AX = Y, d'inconnue X € M, 1(R), posséde au moins une solution
)

le systeme linéaire AX = 0,1, d'inconnue X € M, 1(R), admet 0,1 comme unique solution

*
DEMONSTRATION :

e On a déja de facon immédiate :

* (0) = (o)
* () = (9)
* (f) = (h)
X1
Ensuite, en notant G, ..., G, les colonnes de A, remarquons que st X = | © | € M,1(R), alors :
Xﬂ

AX =x1C + ...+ x,C,
e Pour (f) & (d):
(f) & VY eM,R), IX e M, 1(R)]Y =AX
— VWeMR), I, ...x) R Y =xC+..+x,GC,
J définition d'une base
— (d)
e Pour (g) < (d):
(g) &= YY e M, 1(R), IX e M,1(R) | Y =AX
= VWeM,R), Ix,...x)) ER" Y =xCG + ... + x,G,
 (la famille (G, ..., G,) est génératrice de M, 1(R))

) définition d'une famille génératrice
— (d) J

(Gy, ..., Cy) est de cardinal n et Propriétés 7 - P2

e Pour (h) < (d):
(h) &= YXeM,1(R), (AX=0,1 &= X=0,1)
— Y(x,..x) €R", xG+..+xC =0, & xy=..=x,=0)
= (la famille (G, ..., G,) est llbre)
< (d)

définition de famille libre

J (G, ..., Gy) est de cardinal n et Propriétés 7 - P1
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e Pour (a) < (f): Par double implication..

Supposons que A est inversible.
Soit Y € M, 1(R). Soit X € M, 1(R). On a :

AX=Y &= X=A"Y

Le systeme AX =Y, d'inconnue X € M, 1(R) possede donc une unique solution.

Supposons que pour tout Y € M, 1(R) le systeme AX = Y admet une unique solution.
L'objectif est de montrer qu’il existe une matrice B telle que AB = BA = I,. On veut donc pouvoir passer
d'un résultat général sur les colonnes (AX = Y) a un résultat particulier sur les matrices (AB = 1,).

x Puisque pour tout Y € M, 1(R), le systeme AX = Y possede une unique solution; en particulier, pour
tout i € [1;n], st Y; désigne la i®™ colonne de la matrice /,, alors le systtme AX = Y, posséde une
unique solution, notée B;. En posant B la matrice dont les colonnes sont By, B, ..., B,, alors on a bien
AB = |,.

x A-t-on BA=1,?

Notons C;, ..., C! les colonnes de BA. Puisque ABA=[,A=A ona:

Vie [2;n], AC = G

Or, par hypothése, pour tout i € [1;n], le systéeme linéaire AX = C; posséde une unique solution.
Mais la i-eme matrice de la base canonique de M, 1(R) (colonne nulle avec un seul 1 en i-eme ligne)

0
0
en est solution c'est donc la seule. Par conséquent : Vi € [1;n], ¢/ = | 1| « i-eme ligne. D'ol :
0
0
BA = I, Important !

A ce stade, on a établi :

Par conséquent, A est inversible. (0) = (d) = (1) = (g) > (h

e Pour (a) < (e):
Ona:

(a) <= (‘Aest inversible)
dé : d liquée & ‘A
= (la famille des colonnes de ‘A est une base de M,H(R)) «) on a démontré (a) «= (d). appliquée a

= (o)
Important !
e Pour (b) = (9): On vient d'établir () = (g),
Supposons l'existence d'une matrice B € M, (R), que nous considérons ensuite, telle que AB = . mais (g) = (a), donc

Soit Y € M, 1(R). Remarquons que A(BY) = ABY =Y, donc BY est solution de Uéquation AX = Y, d'inconnue | ) = () Et comme on

avait déja (@) = (b), on obtient

X € M, 1(R). Dot (g). (a) = (b).

e Pour (¢) = (h):
Supposons lexistence d'une matrice B € M, (R), que nous considérons ensuite, telle que BA = /,.
* On sait déja que 0,1 est solution de AX =0,1.
* Soit X € M, 1(R). Supposons que AX =0, 4. Ainsi :

B(AX) = B x 0,4
Autrement dit :
BAX = 0,1 Important !

Or BA =1, Dol : On.vient détablir (c) = (h),

mais (h) = (a), donc
X =01 (c) = (a). Et comme on
avait déja (@) = (c), on obtient
Par conséquent : le systeme linéaire AX = 0,1 posséde une unique solution, d'ou (h). (a) & (o).

]
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