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(CHARTREUX

ALGEBRE LINEAIRE

APPLICATIONS LINEAIRES ENTRE ESPACES VECTORIELS

INTRODUCTION...

Quiconque parle d'applications linéaires en dimension finie pense nécessairement au célébre Théo-Raym Durrant (1843-2017, israelo-argentino-
chinois), dont un trés célebre théoréeme porte son nom...

Sa contribution, tout comme celle de Izo Morfyssm (1917-2043, islando-arménien), fut considérable dans l'étude des applications linéaires. En effet,
on leur doit un remarquable résultat sur le dual de lespace vectoriel des classes déquivalences des distributions tempérées modulo les formes
quadratiques réelles : il est isomorphe au corps des matrices nilpotentes sur l'anneau Z/7Z. La démonstration de ce théoreme repose, en partie, sur
'étude des formes modulaires définies sur la Lemniscate de Kolmogorov-Smirnov, a valeurs dans le demi-plan de Poincaré. Ce résultat, qui ne sera pas
démontré dans ce cours (la marge étant trop étroite pour la contenir) pourrait en revanche faire l'objet d'un probléme de "TOP3": un grand classique donc.

Bref, nous commencerons modestement par l'étude des applications linéaires (les mémes qu'en quatrieme en fait)..
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POUR BIEN DEMARRER...
1. Soient E, F deux ensembles et f : E — F une application.

e Définition : f est injective lorsque
e Définition : f est surjective lorsque
e Définition : f est bijective lorsque

e Caractérisations de la bijectivité de f :

2. La famille (&, &5, ..., 8,) est une famille libre d'un espace vectoriel E lorsque :

3. La famille (&4, &, ..., €,) est une famille génératrice d'un espace vectoriel £ lorsque :

4. La famille (&1, &5, ..., &,) est une base d'un espace vectoriel £ lorsque :

5. La dimension d'un espace vectoriel est

6. Soit E un espace vectoriel de dimension finie. Caractérisation des bases.

7. Soient E un espace vectoriel et F un sous-ensemble de E. Définition :  est un sous-espace vectoriel de E lorsque :
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Dans tout ce chapitre, £ et F sont des espaces vectoriels réels.

| DEFINITION ET PREMIERS EXEMPLES

DEFINITIONS 1 APPLICATION LINEAIRE

Soit f : E — F une application. On dit que f est une application linéaire lorsque :
VA u R, Vi, Ve E, f(AT+ pv) = Af(d) + pf(V)
Un endomorphisme de E est une application linéaire de £ dans E.

Un isomorphisme est une application linéaire bijective.

Un automorphisme de E est un endomorphisme de E bijectif.

En gros... —

Une application linéaire est une
application compatible avec les
combinatisons linéatres !

% Notation
On note Z(E, F) l'ensemble
des applications linéaires de £
dans F; et Z(E) = ZL(EE)
(l'ensemble des endomorphismes
de E).

Viennent naturellement quelques propriétés immédiates :

PROPRIETES 1

Soit f € Z(E, F).
—> —>
f(0) = 0r
VAER, VT € E, f(AT) = Af(d); et en particulier : V@ € E, f(—a) = —f(d)

i)\[lj,’) = y

i=1

Vo e N YA, do, o hy ER, Yiy i, i, €E - 1 (

¥ Astuce du chef ¥
Les deux premieres propriétés
peuvent aussi servir pour montrer
qu'une application n'est pas li-
néatre...

*
DEMONSTRATION :
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EXEmMPLES 1

L'application @ € E —— @ est un endomorphisme de £, et méme un automorphisme de E : cest l'identité,
notée idg.

E2 | L'application & € E —> Or est une application linéaire de E dans F : cest l'application linéaire nulle.

[ E3 | L'application P € R[X]—— P’ est un endomorphisme de R[X]. Remarque

| E4 | Les applications linéaires de R dans R sont les applications f : x — ax, avec a € R. ﬁuuaetlrlsécrggﬁ--- on sait ¢a depuis la
E5 | Lapplication A € M,, ,(R) — ‘A est une application linéaire. .

_ Pourquoi ?

E6 | L'application qui, a une variable aléatoire, associe son espérance, est une application linéaire. En revanche, | on sait que E(aX + bY) =
aE(X) + bE(Y). Mais, de fagon
générale, V(aX + bY) # aV(X) +

l'application qui, a une variable aléatoire, associe sa variance, n'est pas une application linéaire.

Considérons l'application f : (x, y) — (2x + y, x — y). Démontrons que f est un endomorphisme de R bV(Y)..

Considérons l'application f définie sur R par : V(x, y) € R%, f(x,y) = (3x — y, x + 5y + 1). Montrons que f
n'est pas une application linéaire.

Considérons l'application f qui, a toute fonction polynomiale P € Rs[x] associe la fonction f(P) définie par :
Vx € R, f(P)(x) = P(x) — P(x + 1). Montrons que f est une application linéaire de Rs]x] dans Ry[x|

Considérons l'application f qui, a toute fonction polynomiale P € R,[x] associe la fonction f(P) définie par :
¥x € R, f(P)(x) = P(x)* + P'(x). Montrons que f n'est pas une application linéaire.
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E11 | Notons ¢ lapplication définie sur #(R, R) qui a toute fonction f € € (R, R) associe la fonction ¢(f) définie
2

X Confusion d’objets !
sur R par : Vx € R, ¢(f)(x) = / tf(t)dt. Montrons que ¢ est un endomorphisme de € (R, R). 4’7(p(f) est une fonction ! T
0

inéaire canoniquement associée a

Vocabulaire ———
On dira que f est 'application
l
A

Pour toute matrice A € M, ,(R), l'application
M, 1(R) dans M, 1(R).

est une application linéaire de

*
DEMONSTRATION :

| EXEMPLES 2 I
X X+y+z
Démontrons que l'application f: [y | — ( N 3 y )
z
X X 11 1
Soit [y | € M34(R). Posons X = [y | et A= (1 _ 0) de sorte que f(X) = AX.

z z

Conclusion : l'application f est une application linéaire de M3 1(R) dans M, 1(R) et la matrice A est sa matrice
canoniquement associée.
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X —2X+y+z
Démontrons que l'application f : x+—— [y | — [ x—2y + 2z | est un endomorphisme de Mj51(R).
z X+y—2z

Autrement dit :
Une combinaison linéaire d'ap-
PROPRIETES 2 STRUCTURE DE Z(E, F) plications linéaires est encore
une application linéaire... Et la
composée de deux applications li-
néaires est encore une application

Soient £, F, G trois espaces vectoriels réels.

(X(E, ), +, ) est un espace vectoriel réel. linéatre.
Vf e Z(E,F)Vg € Z(F,G), gof e Z(E,G). Conséquence

Sif € Z(E), alors pour tout
neN, " e ZL(E) ol f" désigne

* , fof..of.
DEMONSTRATION : ——

n fois

P1. Montrons que (.Z(E, F),+, ) est un sous-espace vectoriel de l'espace vectoriel des applications de E dans F.
v Par définition, Z(E, F) est inclus dans l'espace vectoriel des applications de E dans F.
v L'application nulle est linéaire, donc Z(E, F) est non vide.
v Solent A, peRetf,ge Z(E,F). Montrons que Af + g € Z(E, F).
* On sait déja que Af + pg est une application définie sur E et a valeurs dans F, car f et g le sont.
* Montrons que Af 4 pg est linéaire.

Soient a,b € R et &,V € E. Montrons que (Af + pg)(ad + bV) = a(Af + pg)(@) + b(Af + ug)(V).
On a, par linéarité de l'évaluation en ai + bV :

(Af + pg)(ad + bv) = Af(ad + bV) + pg(ad + bv)
Aaf(d) + bf(V) + p(ag(d) + bg(V)
a(AF(@) + pg(a@)) + b(AF(@) + pg(@))(7)
= a(Af + pg)(d) + b(Af + pg)(v)

() f et g sont linéaires

J linéarité des évaluations en 7 et V

Donc Af + ug est linéatre.
Par conséquent :
M+ ug e Z(EF)
Conclusion : Z(E, F) est un sous-espace vectoriel de l'espace vectoriel des applications de E dans F; Z(E, F)
est donc un espace vectoriel.
P2. Soient f € Z(E,F) et g € Z(F, G). Montrons que go f € Z(E, G).
e |'application g o f est bien définie sur E et a valeurs dans G.

e Montrons que g o f est linéaire.
Soient A, 1 € R et &,V € E. Montrons que g o f(Ad + pV) = Ag o f(d) + ug o (V).

Ona:
g o f(Ad + pv) = g(F(AT + pV)) o
— g(/\f(ﬁ) + uf(\7)) J l%n%arft% de f
= /\g(f(J)) + ug(f(\7)) J linéarité de g

= Ag o f(i) + pg o f(V)

Donc g o f est linéaire.
Conclusion : go f € Z(E, Q).

PROPRIETE 3

Si f est un isomorphisme de E dans F, alors f~' est un isomorphisme de F dans E.

= Rappel...

* St f est une application bijective
DEMONSTRATION : de A dans B, alors f~" est bijec-
tive de B dans A; et on a aussi :

fof' = fof=
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Pour finir sur cette premiére partie, un résultat parfois utile :

PROPRIETE 4

A retenir...
Deux applications linéaires sur £ sont égales si, et seulement si, elles coincident sur une base de E. En particulier, une application
Autrement dit, si en notant n = dim(E) et considérons une base (&, &, ..., €,) de E, on a : linéaire est entierement définie
par l'image qu'elle renvoie des
. ) N N vecteurs d'une base de l'espace
(VX S f(X) = g(X)) (VI € [[1’ nﬂ‘ f(ei) = g(ei)) vectoriel de départ.

*
DEMONSTRATION :

Il NoYAU & IMAGE D'UNE APPLICATION LINEAIRE

Dans toute la suite, f désigne une application linéaire de £ dans F.

DEFINITION 2 NOYAU D'UNE APPLICATION LINEAIRE

Le noyau de f, noté ker(f), est l'ensemble défini par :

ker(f) = {d € E | f(&) = O }

PROPRIETE 5

ker(f) est un sous-espace vectoriel de E.

*
DEMONSTRATION :
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Un résultat tres utile en pratique qui relie noyau et injectivité d'une application linéaire :

2z , X Attention !
PROPRIETE 6 INJECTIVITE ET NOYAU Cela ne veut pas dire que ker(f)
est vide (un espace vectoriel n'est
jamais vide) : mais seulement qu'il

f est injective si, et seulement si, ker(f) = {0¢ } et réduit au vecteur nul
* ’
DEMONSTRATION :
— Remarque
On a, pour tous 7,V € E :
f(d) = £(v)
-
— f(d)—f(V)=0r
‘ d
<|| = fi-n=07
= 0 — Ve ker(f)
| EXEmPLES 3 I = I cker(f) | T=V+W

L'application f : P € R[x] —> P’ est un endomorphisme de R[x] (la linéarité découle de la linéarité de la
dérivation). Et :

ker(f) =
Conclusion : l'application f n'est pas injective.
T 1 1
Considérons A = [ 2 1 0] et l'application f définie sur M3(R) par : VX € M3;(R), f(X) = AX.
-1 0 1

D'aprés le théoréme 1, on sait que f est un endomorphisme de Ms;(R). Déterminons son noyau. Qu'en dire?
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En dimension finie (ce qui sera, sauf cas tres exceptionnels, toujours le cas), la recherche
du noyau d'une application linéaire peut toujours se ramener a la résolution d'un systeme
linéaire homogene.

DEFINITION 3 IMAGE D'UNE APPLICATION LINEAIRE

5 Rappels...

e En fait : Im(f) = f(E). Clest

'ensemble de toutes les images

des vecteurs de E par f..

Im(f) = {176 Fl|3deE, V= f([f)} = {f(g’) = E} e On avait également vu que f est
surjective sst Im(f) = F. On ne

peut pas faire mieux dans le cas

Voici une propriété que L'on utilisera pour déterminer l'image d'une application linéaire : des applications linéaires.

L'image de f, notée Im(f), est l'ensemble défini par :

PROPRIETE 7

Im(f) est un sous-espace vectoriel de F et méme :

& Méthode !
si (81,85, ..., €,) est une famille génératrice de E, alors Im(f) = Vect(f(&), (&), ..., f(€,)) %ﬁjgz‘?ﬁ;i’)‘;’;pc;e:fnﬁqrqu;:E"_

*
DEMONSTRATION :
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| EXEMPLE 4 I

Démontrons que l'application f : (2) — 3x est linéaire et déterminons son image. Qu'en dire?
X—y

PETITE PARTIE A LA LIMITE DU PROGRAMME : ESPACES VECTORIELS ISOMORPHES ET DIMENSION

Soient E un espace vectoriel, n un entier naturel non nul et &, &;..., &, des vecteurs de E. On pose f l'application
suivante :

f: R" — F Remarque
n Au passage, (€1, €2, ..., €,) est
8 'image par f de la base cano-
X1, 0 X — X; € ge p
b n) 21 o nique de R"...
=

Sans difficulté, on vérifie que f € Z(R", E). De surcrotlt :
e par définition, f est surjective si, et seulement si, la famille (&, &5..., &,) est génératrice de E;
)

e par définition : ker(f) = {Orn} si, et seulement si, la famille (&7, &,..., &,) est libre. D'aprés la propriété 6, f est
donc injective si, et seulement si, la famille (&7, &;..., &,) est libre.

On en déduit donc : f est un isomorphisme de R" dans E si, et seulement si, (&1, ..., €,) est une base de E. En particulier,

st f est un isomorphisme, alors dim(£) = n. On retient donc pour l'instant : Vocabulaire

On dit que deux EV sont iso-
— - - morphes lorsqu'il existe un iso-
|Sl R" et E sont isomorphes, alors dim(E) = n | morphisme entre les deux.

La réciproque de cette implication est-elle encore valable ? Oui, c'est bien le cas!
Supposons que dim(E) = n, considérons (&, ..., €,) une base de E et posons f: (xq, ..., X,) —> X; 6.

D'aprés ce qui précede, puisque (€7, ..., €,) une base de E, f est un isomorphisme. D'ou :

|si dim(E) = n, alors E est isomorphe a R” |

On obtient ainsi le théoréme suivant :

THEOREME 2 ISOMORPHISME ET DIMENSION

Et par conséquent : dim(E) =

dim(E) = n si, et seulement si, £ est isomorphe & R" (ou M, 1(R)...) dim(F) sst £ et F sont iso-

morphes.
L'impact est considérable : tout espace vectoriel de dimension finie est isomorphe a un R” Remarque
(ou M, 1(R)). Autrement dit : tout vecteur d'un espace vectoriel £ de dimension finie peut Ce résultat est a la fois puissant
étre vu comme une matrice ligne (ou colonne) : la matrice de ses coordonnées, une fois et décevant : tous les EV de di-
. menston finte n ont la méme téte
une base de £ choisie. que R". Cest génial et peu origi-

nal a la fois...
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I THEOREME DU RANG ET CONSEQUENCES

DEFINITION 4 RANG D'UNE APPLICATION LINEAIRE

Le rang de f, noté rg(f), est la dimension de Im(f).

On a immédiatement :

PROPRIETES 8

Soient E et F deux espaces vectoriels de dimension finie et f € Z(E, F).
rg(f) < min ( dim(E), dim(F))
f est surjective si, et seulement si, rg(f) = dim(F)

Remarque

Par conséquent, st dim(E) <
dim(F), alors f ne peut pas étre

surjective |
* ’
DEMONSTRATION :
]
Et voict le fameux théoreme, un des plus importants d'algebre linéaire en dimension finie :
THEOREME 3 THEOREME DU RANG
St E est un espace vectoriel de dimension finie et f : E — F une application linéaire, alors :
X Attention !
dim(E) = dim ( ker(f)) + rqg(f) Ceest la dimension de lespace de
départ qui entre en jeu !

*
DEMONSTRATION : Allez voir en maths appro ! N

& METtHoDE 1 & Pour déterminer noyau et image d'une application linéaire :

1. on commence par celui qui nous semble le plus simple (ou celui qui est demandé en premier),

2. on utilise le théoréeme du rang pour avoir la dimension de l'autre, et le déterminer par ensuite.

EXEMPLE 5

Reprenons l'application f de Exemples 3 - E2. Quel est son rang?
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Conséquence importante du théoreme du rang :

PROPRIETE 9

Soient E et F deux espace vectoriels de dimension finie et f € Z(E, F).
St dim(E) = dim(F) = n, alors :

f injective «=——— f surjective

Important ! ——
Cas particulier important : cette

propriété est vraie pour les endo-
f bl ective morphismes en dimension finie.

Autrement dit, st dim(£E) = dim(F) = n, alors :

ker(f) = {Og} ~—— rg(f

N/

f bijective

FDEMONSTRATION : Supposons que dim(E) = dim(F).
e Montrons que l'injectivité de f équivaut a sa surjectivité.
Puisque E est de dimension finie, d'apres le théoreme du rang :
dim(E) = dim ( ker(f)) + rg(f)

Ensuite :

( est injective) ker(f) = {Og}

dim ( ker(f)) =0 15 Rappels...

J théoréme du rang e Le singleton {Og} est le seul

rg(f) = dim(F)

S
S
< rg(f) = dim(E)
=
— Im(f)=F

J dim(E) = dim(F)

sous-espace vectoriel de E de
dimension 0.

e Im(f) est un ssev de F

o le seul ssev de F de dimension
égale a dim(F) est £ lui-méme

& (f est surjective)

e Montrons que f est injective si, et seulement si, f est bijective.
On sait déja que la bijectivité de f implique son injectivité (par définition).
D'aprés ce qui précede, U'injectivité de f implique sa surjectivité. Par conséquent, si f est injective, elle est
également surjective et donc bijective. L'injectivité de f implique donc sa bijectivité.

Conclusion : f est injective si, et seulement si, f est bijective.

e De la méme fagon, on démontre que f est surjective si, et seulement si, f est bijective.

| EXEMPLE 6 I

]

X X+y+z
Démontrons que l'application f: [y | — X—z est un automorphisme de Ms+(R).
z X+ y+z
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