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Algèbre linéaireApplications linéaires entre espaces vectoriels

Introduction...

Quiconque parle d’applications linéaires en dimension finie pense nécessairement au célèbre Théo-Raym Durrant (1843-2017, israelo-argentino-chinois), dont un très célèbre théorème porte son nom...Sa contribution, tout comme celle de Izo Morfyssm (1917-2043, islando-arménien), fut considérable dans l’étude des applications linéaires. En effet,on leur doit un remarquable résultat sur le dual de l’espace vectoriel des classes d’équivalences des distributions tempérées modulo les formesquadratiques réelles : il est isomorphe au corps des matrices nilpotentes sur l’anneau Z/πZ. La démonstration de ce théorème repose, en partie, surl’étude des formes modulaires définies sur la Lemniscate de Kolmogorov-Smirnov, à valeurs dans le demi-plan de Poincaré. Ce résultat, qui ne sera pasdémontré dans ce cours (la marge étant trop étroite pour la contenir) pourrait en revanche faire l’objet d’un problème de "TOP3" : un grand classique donc.
Bref, nous commencerons modestement par l’étude des applications linéaires (les mêmes qu’en quatrième en fait)...
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Pour bien démarrer...
1. Soient E, F deux ensembles et f : E −→ F une application.

• Définition : f est injective lorsque ∀(x, x ′) ∈ E2, (f (x) = f (x ′) =⇒ x = x ′
)

• Définition : f est surjective lorsque ∀y ∈ F, ∃!x ∈ E / y = f (x)
• Définition : f est bijective lorsque ∀y ∈ F, ∃!x ∈ E / y = f (x)
• Caractérisations de la bijectivité de f :

f est bijective si, et seulement si, f est injective et surjectivesi, et seulement si, ∀y ∈ F, ∃!x ∈ E / y = f (x)si, et seulement si, il existe g : F → E telle que g ◦ f = idE et f ◦ g = idF

2. La famille (e⃗1, e⃗2, ..., e⃗n) est une famille libre d’un espace vectoriel E lorsque :
∀(λ1, ..., λn ∈ Rn), ( n∑

k=1 λk e⃗k = 0⃗E =⇒ ∀k ∈ J1; nK, λk = 0)

3. La famille (e⃗1, e⃗2, ..., e⃗n) est une famille génératrice d’un espace vectoriel E lorsque :
∀u⃗ ∈ E, ∃(λ1, ..., λn) ∈ Rn / u⃗ = n∑

k=1 λk e⃗k

4. La famille (e⃗1, e⃗2, ..., e⃗n) est une base d’un espace vectoriel E lorsque :
∀u⃗ ∈ E, ∃!(λ1, ..., λn) ∈ Rn / u⃗ = n∑

k=1 λk e⃗k

5. La dimension d’un espace vectoriel est le cardinal commun à toutes ses bases.
6. Soit E un espace vectoriel de dimension finie. Caractérisation des bases.Une famille de E est une base si, et seulement si, elle est libre et génératricesi, et seulement si, elle est libre et de cardinal égal à dim(E )si, et seulement si, elle est génératrice et de cardinal égal à dim(E )
7. Soient E un espace vectoriel et F un sous-ensemble de E . Définition : F est un sous-espace vectoriel de E lorsque :

✓ F ⊂ E ;
✓ F ̸= ∅ (on vérifie que 0⃗E ∈ F ) ;
✓ ∀(λ, µ) ∈ R2, ∀(u⃗, v⃗ ) ∈ E2, λu⃗ + µv⃗ ∈ F .
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Dans tout ce chapitre, E et F sont des espaces vectoriels réels.
I Définition et premiers exemples

Définitions 1 Application linéaire

D1 Soit f : E → F une application. On dit que f est une application linéaire lorsque :
∀λ, µ ∈ R, ∀u⃗, v⃗ ∈ E, f (λu⃗ + µv⃗ ) = λf (u⃗) + µf (v⃗ )

D2 Un endomorphisme de E est une application linéaire de E dans E .
D3 Un isomorphisme est une application linéaire bijective.
D4 Un automorphisme de E est un endomorphisme de E bijectif.

Une application linéaire est uneapplication compatible avec lescombinaisons linéaires !
En gros...

On note L (E, F ) l’ensembledes applications linéaires de Edans F ; et L (E ) = L (E, E )(l’ensemble des endomorphismesde E ).

✎ Notation

Viennent naturellement quelques propriétés immédiates :

Les deux premières propriétéspeuvent aussi servir pour montrerqu’une application n’est pas li-néaire...
♥ Astuce du chef ♥

Propriétés 1

Soit f ∈ L (E, F ).
P1 f (−→0E ) = −→0F

P2 ∀λ ∈ R, ∀u⃗ ∈ E, f (λu⃗) = λf (u⃗) ; et en particulier : ∀u⃗ ∈ E, f (−u⃗) = −f (u⃗)
P3 ∀n ∈ N∗, ∀λ1, λ2, ..., λn ∈ R, ∀u⃗1, u⃗2, ...u⃗n ∈ E : f

( n∑
i=1 λiu⃗i

) = n∑
i=1 λif (u⃗i).

⋆ Démonstration :
P1. Puisque f est une application linéaire, on a : ∀λ, µ ∈ R, ∀u⃗, v⃗ ∈ E, f (λu⃗ + µv⃗ ) = λf (u⃗) + µf (v⃗ ).En prenant λ = µ = 0 et u⃗ = v⃗ = −→0E , on a

λu⃗ + µv⃗ = −→0E ; λf (u⃗) + µf (v⃗ ) = −→0F

Conclusion : f (−→0E ) = −→0F .
P2. Soient λ ∈ R et u⃗ ∈ E . Puisque f est une application linéaire, on a : ∀µ ∈ R, ∀v⃗ ∈ E, f (λu⃗+µv⃗ ) = λf (u⃗)+µf (v⃗ ).En prenant µ = 0 et v⃗ = −→0E , on a :

λu⃗ + µv⃗ = λu⃗ ; λf (u⃗) + µf (v⃗ ) = λf⃗ (u⃗)
Conclusion : f (λu⃗) = λf (u⃗). D’où le cas particulier, en prenant λ = −1.

P3. Procédons par récurrence...
• Initialisation. Pour n = 1 : immédiat d’après P2.
• Hérédité. Soit n ∈ N∗ . Supposons "∀λ1, λ2, ..., λn ∈ R, ∀u⃗1, u⃗2, ...u⃗n ∈ E : f

( n∑
i=1 λiu⃗i

) = n∑
i=1 λif (u⃗i)".

Montrons "∀λ1, λ2, ..., λn+1 ∈ R, ∀u⃗1, u⃗2, ...u⃗n+1 ∈ E : f
(n+1∑

i=1 λiu⃗i

) = n+1∑
i=1 λif (u⃗i)".Soient λ1, λ2, ..., λn+1 ∈ R et u⃗1, u⃗2, ...u⃗n+1 ∈ E . On a :

f
(n+1∑

i=1 λiu⃗i

) = f
( n∑

i=1 λiu⃗i + λn+1u⃗n+1
)

car f est linéaire
= f

( n∑
i=1 λiu⃗i

)+ λn+1f (u⃗n+1) hypothèse de récurrence
= n∑

i=1 λif (u⃗i) + λn+1f (u⃗n+1)
= n+1∑

i=1 λif (u⃗i)
L’hérédité est ainsi établie.

Conclusion : ∀n ∈ N∗, ∀λ1, λ2, ..., λn ∈ R, ∀u⃗1, u⃗2, ...u⃗n ∈ E : f
( n∑

i=1 λiu⃗i

) = n∑
i=1 λif (u⃗i).

⋆
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Exemples 1

E1 L’application u⃗ ∈ E 7−→ u⃗ est un endomorphisme de E , et même un automorphisme de E : c’est l’identité,notée idE .
E2 L’application u⃗ ∈ E 7−→ 0⃗F est une application linéaire de E dans F : c’est l’application linéaire nulle.
E3 L’application P ∈ R[X ] 7−→ P ′ est un endomorphisme de R[X ].
E4 Les applications linéaires de R dans R sont les applications f : x 7−→ ax , avec a ∈ R. Quel scoop... on sait ça depuis laquatrième !

Remarque

E5 L’application A ∈Mn,p(R) 7−→ tA est une application linéaire.
E6 L’application qui, à une variable aléatoire, associe son espérance, est une application linéaire. En revanche,l’application qui, à une variable aléatoire, associe sa variance, n’est pas une application linéaire. On sait que E(aX + bY ) =

aE(X ) + bE(Y ). Mais, de façongénérale, V(aX + bY ) ̸= aV(X ) +
bV(Y )...

Pourquoi ?

E7 Considérons l’application f : (x, y) 7−→ (2x + y, x − y). Démontrons que f est un endomorphisme de R2 .
✓ On a déjà : ∀(x, y) ∈ R2, f (x, y) ∈ R2 .
✓ Montrons que f est linéaire.Soient λ, µ ∈ R et (x, y), (x ′, y′) ∈ R2 . Montrons que f

(
λ(x, y) + µ(x ′, y′)) = λf (x, y) + µf (x ′, y′).On a :

f
(
λ(x, y) + µ(x ′, y′)) = f (λx + µx ′, λy + µy′)= (2(λx + µx ′) + λy + µy′, λx + µx ′ − (λy + µy′))= (λ(2x + y) + µ(2x ′ + y′), λ(x − y) + µ(x ′ − y′))= λ(2x + y, x − y) + µ(2x ′ + y′, x ′ − y′)= λf (x, y) + µf (x ′, y′)

Donc f est linéaire.
Conclusion : l’application f : (x, y) 7−→ (2x + y, x − y) est un endomorphisme de R2 .
E8 Considérons l’application f définie sur R2 par : ∀(x, y) ∈ R2, f (x, y) = (3x − y, x + 5y + 1). Montrons que fn’est pas une application linéaire.Remarquons que f (0, 0) ̸= (0, 0).
Conclusion : f n’est pas linéaire.
E9 Considérons l’application f qui, à toute fonction polynomiale P ∈ R3[x ] associe la fonction f (P) définie par :
∀x ∈ R, f (P)(x) = P(x)− P(x + 1). Montrons que f est une application linéaire de R3[x ] dans R2[x ].

✓ Soient λ, µ ∈ R et P, Q ∈ R[x ]. Montrons que f (λP + µQ) = λf (P) + µf (Q). f (P) est une fonction !Confusion d’objets !

Autrement dit, montrons : ∀x ∈ R, f (λP + µQ)(x) = λf (P)(x) + µf (Q)(x).Soit x ∈ R. On a :
f (λP + µQ)(x) = (λP + µQ)(x)− (λP + µQ)(x + 1) linéarité de l’évaluation en x et x + 1= λP(x) + µQ(x)− λP(x + 1)− µQ(x + 1)= λ

(
P(x)− P(x + 1)) + µ

(
Q(x)−Q(x + 1))= λf (P)(x) + µf (Q)(x)

Donc f est linéaire.
✓ Soit P : x 7−→ ax3 + bx2 + cx + d. On a, pour tout x ∈ R :

f (P)(x) = ax3 + bx2 + cx + d −
(
a(x + 1)3 + b(x + 1)2 + c(x + 1) + d

)
= a

(
x3 − (x + 1)3) + b

(
x2 − (x + 1)2) + c

(
x − (x + 1))= a(−3x2 − 3x − 1) + b(−2x − 1)− c= −3ax2 − (3a + 2b)x − a − b − c

Par conséquent :
f (P) ∈ R2[x ]

Conclusion : ∀P ∈ R3[x ], f (P) ∈ R2[x ].
Conclusion : f est une application linéaire de R3[x ] dans R2[x ].

En définissant f sur Rn [x ] (avec
n ⩾ 1), on peut démontrer que
f est une application linéaire de
Rn [x ] dans Rn−1 [x ].

✔ Pour s’entraîner...

E10 Considérons l’application f qui, à toute fonction polynomiale P ∈ Rn[x ] associe la fonction f (P) définie par :
∀x ∈ R, f (P)(x) = P(x)2 + P ′(x). Montrons que f n’est pas une application linéaire.Considérons la fonction polynomiale P : x 7−→ x . On a ainsi, pour tout x ∈ R :

−f (P)(x) = −(x2 + 1) ; f (−P)(x) = x2 − 1
Les fonctions polynomiales x 7−→ x2 − 1 et x 7−→ −(x2 + 1) sont différentes. D’où : f (−P) ̸= −f (P).
Conclusion : f n’est pas linéaire.
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E11 Notons φ l’application définie sur C (R, R) qui à toute fonction f ∈ C (R, R) associe la fonction φ(f ) définie
sur R par : ∀x ∈ R, φ(f )(x) = ∫ x2

0 tf (t)dt . Montrons que φ est un endomorphisme de C (R, R). φ(f ) est une fonction !Confusion d’objets !

✓ Soit f ∈ C (R, R). La fonction t 7−→ tf (t) est un produit de deux fonctions continues sur R, elle est doncégalement continue sur R. Par conséquent, la fonction t 7−→ tf (t) admet des primitives, qui sont C 1 sur R.Notons G l’une d’elles. On a ainsi, pour tout x ∈ R :
φ(f )(x) = ∫ x2

1 tf (t)dt

= G(x2)−G(1)
Or G est C 1 sur R, donc par composition, la fonction x 7−→ G(x2) est C 1 sur R.Par conséquent, la fonction φ(f ) est C 1 sur R, donc en particulier continue sur R.
Conclusion : φ est définie sur C (R, R) et à valeurs dans C (R, R).

✓ Montrons que φ est linéaire.Soient λ, µ ∈ R et f , g ∈ C (R, R). Montrons que φ(λf + µg) = λφ(f ) + µφ(g). On veut établir une égalité defonctions !
Confusion d’objets !Autrement dit, montrons :

∀x ∈ R, φ(λf + µg)(x) = λ
(
φ(f ) + µφ(g))(x)

On a, pour tout x ∈ R :
φ(λf + µg)(x) = ∫ x2

1 t
(
λf (t) + µg(t))dt par linéarité de l’intégrale

= λ
∫ x2

1 tf (t)dt + µ
∫ x2

1 tg(t)dt

= λφ(x)f (x) + µφ(g)(x)
On a établi :

∀x ∈ R, φ(λf + µg)(x) = λφ(f )(x) + µφ(g)(x)D’où :
φ(λf + µg) = λφ(f ) + µφ(g)

Conclusion : φ est linéaire.
Conclusion : φ est un endomorphisme de C (R, R).

On dira que f est l’applicationlinéaire canoniquement associée à
A.

VocabulaireThéorème 1

Pour toute matrice A ∈ Mn,p(R), l’application f : Mp,1(R) −→ Mn,1(R)
X 7−→ AX est une application linéaire de

Mp,1(R) dans Mn,1(R).
⋆ Démonstration : Soit A ∈Mn,p(R).
• Puisque A ∈Mn,p(R), on a déjà : ∀X ∈Mp,1(R), f (X ) ∈Mn,1(R).
• Montrons que f est linéaire.Soient λ, µ ∈ R et X, Y ∈ Mp,1(R). Montrons que f (λX + µY ) = λf (X ) + µf (Y ).On a :

f (λX + µY ) = A(λX + µY )= λAX + µAY= λf (X ) + µf (Y )
Donc f est linéaire.

⋆

Exemples 2

E1 Démontrons que l’application f : x
y
z

 7−→ (
x + y + z

x − y

).
Soit x

y
z

 ∈M3,1(R). Posons X = x
y
z

 et A = (1 1 11 −1 0) de sorte que f (X ) = AX .
Conclusion : l’application f est une application linéaire deM3,1(R) dansM2,1(R) et la matrice A est sa matricecanoniquement associée.
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E2 Démontrons que l’application f : x 7−→

x
y
z

 7−→ −2x + y + z
x − 2y + z
x + y − 2z

 est un endomorphisme de M3,1(R). Soitx
y
z

 ∈M3,1(R). Posons X = x
y
z

 et A = −2 1 11 −2 11 1 −2
 de sorte que f (X ) = AX .

Conclusion : l’application f est un endomorphisme de M3,1(R) et la matrice A est sa matrice canoniquementassociée.
Une combinaison linéaire d’ap-plications linéaires est encoreune application linéaire... Et lacomposée de deux applications li-néaires est encore une applicationlinéaire.

Autrement dit :

Si f ∈ L (E ), alors pour tout
n ∈ N, fn ∈L (E ), où fn désigne
f ◦ f ... ◦ f︸ ︷︷ ︸

n fois .
Conséquence

Propriétés 2 Structure de L (E, F )

Soient E, F, G trois espaces vectoriels réels.
P1

(
L (E, F ), +, .

) est un espace vectoriel réel.
P2 ∀f ∈ L (E, F ), ∀g ∈ L (F, G), g ◦ f ∈ L (E, G).

⋆ Démonstration :
P1. Montrons que (L (E, F ), +, .

) est un sous-espace vectoriel de l’espace vectoriel des applications de E dans F .
✓ Par définition, L (E, F ) est inclus dans l’espace vectoriel des applications de E dans F .
✓ L’application nulle est linéaire, donc L (E, F ) est non vide.
✓ Soient λ, µ ∈ R et f , g ∈ L (E, F ). Montrons que λf + µg ∈ L (E, F ).

✱ On sait déjà que λf + µg est une application définie sur E et à valeurs dans F , car f et g le sont.

✱ Montrons que λf + µg est linéaire.Soient a, b ∈ R et u⃗, v⃗ ∈ E . Montrons que (λf + µg)(au⃗ + bv⃗ ) = a(λf + µg)(u⃗) + b(λf + µg)(v⃗ ).On a, par linéarité de l’évaluation en au⃗ + bv⃗ :
(λf + µg)(au⃗ + bv⃗ ) = λf (au⃗ + bv⃗ ) + µg(au⃗ + bv⃗ )

f et g sont linéaires= λ
(
af (u⃗) + bf (v⃗ )) + µ

(
ag(u⃗) + bg(v⃗ ))= a

(
λf (u⃗) + µg(u⃗)) + b

(
λf (u⃗) + µg(u⃗))(v⃗ ) linéarité des évaluations en u⃗ et v⃗= a(λf + µg)(u⃗) + b(λf + µg)(v⃗ )

Donc λf + µg est linéaire.Par conséquent :
λf + µg ∈ L (E, F )

Conclusion : L (E, F ) est un sous-espace vectoriel de l’espace vectoriel des applications de E dans F ; L (E, F )est donc un espace vectoriel.
P2. Soient f ∈ L (E, F ) et g ∈ L (F, G). Montrons que g ◦ f ∈ L (E, G).

• L’application g ◦ f est bien définie sur E et à valeurs dans G .
• Montrons que g ◦ f est linéaire.Soient λ, µ ∈ R et u⃗, v⃗ ∈ E . Montrons que g ◦ f (λu⃗ + µv⃗ ) = λg ◦ f (u⃗) + µg ◦ f (v⃗ ).On a :

g ◦ f (λu⃗ + µv⃗ ) = g
(
f (λu⃗ + µv⃗ )) linéarité de f= g
(
λf (u⃗) + µf (v⃗ )) linéarité de g= λg
(
f (u⃗)) + µg

(
f (v⃗ ))= λg ◦ f (u⃗) + µg ◦ f (v⃗ )

Donc g ◦ f est linéaire.
Conclusion : g ◦ f ∈ L (E, G).

⋆

Si f est une application bijectivede A dans B, alors f−1 est bijec-tive de B dans A ; et on a aussi :
f ◦ f−1 = idB ; f−1 ◦ f = idA

☞ Rappel...

Propriété 3

Si f est un isomorphisme de E dans F , alors f−1 est un isomorphisme de F dans E .
⋆ Démonstration : Supposons que f est un isomorphisme de E dans F .
• Puisque f est bijective de E dans F , on sait que f−1 est bijective de F dans E .
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• Montrer que f−1 est une application linéaire de F dans E .Soient λ, µ ∈ R et u⃗, v⃗ ∈ F .Puisque u⃗, v⃗ ∈ F et que f est bijective de E dans F , il existe des uniques vecteurs x⃗ et y⃗ dans E , que nousconsidérons ensuite, tels que u⃗ = f (x⃗) et v⃗ = f (y⃗).On a ainsi :
f−1(λu⃗ + µv⃗ ) = f−1(λf (x⃗) + µf (y⃗)) linéarité de f= f−1(f (λx⃗ + µy⃗))

f−1 ◦ f = idE= λx⃗ + µy⃗
f (x⃗) = u⃗ et f (y⃗) = v⃗ , donc x⃗ = f−1(u⃗) et y⃗ = f−1(v⃗ )= λf−1(u⃗) + µf−1(v⃗ )

L’application f−1 est donc linéaire.
Conclusion : f−1 est un isomorphisme de F dans E . ⋆

Pour finir sur cette première partie, un résultat parfois utile :

En particulier, une applicationlinéaire est entièrement définiepar l’image qu’elle renvoie desvecteurs d’une base de l’espacevectoriel de départ.

À retenir...
Propriété 4

Deux applications linéaires sur E sont égales si, et seulement si, elles coïncident sur une base de E .Autrement dit, si en notant n = dim(E ) et considérons une base (e⃗1, e⃗2, ..., e⃗n) de E , on a :(
∀x ∈ E, f (x) = g(x)) ⇐⇒ (

∀i ∈ J1; nK, f (e⃗i) = g(e⃗i))
⋆ Démonstration :
⇒ Immédiat.
⇐ Supposons : ∀i ∈ J1; nK, f (e⃗i) = g(e⃗i). Montrons ∀x⃗ ∈ E, f (x⃗) = g(x⃗).Soit x⃗ ∈ E . Puisque (e⃗1, e⃗2, ..., e⃗n) est une base de E , il existe des uniques réels λ1, λ2, ..., λn tels que :

x⃗ = n∑
i=1 λie⃗i . On a alors :

f (x⃗) = f
( n∑

i=1 λie⃗i

)
linéarité de f

= n∑
i=1 λif (e⃗i) hypothèse

= n∑
i=1 λig(e⃗i) linéarité de g

= g
( n∑

i=1 λie⃗i

)
= g(x⃗)

On a ainsi établi : ∀x⃗ ∈ E, f (x⃗) = g(x⃗).
Puisque l’unicité des λi n’apas été utilisée, seul le carac-tère générateur de la famille(e⃗1, e⃗2, ..., e⃗n) suffit.

Remarque

⋆

II Noyau & image d’une application linéaire
Dans toute la suite, f désigne une application linéaire de E dans F .

Définition 2 Noyau d’une application linéaire

Le noyau de f , noté ker(f ), est l’ensemble défini par :
ker(f ) = {u⃗ ∈ E / f (u⃗) = 0⃗F

}
Propriété 5

ker(f ) est un sous-espace vectoriel de E .
⋆ Démonstration :

✓ Par définition : ker(f ) ⊂ E .
✓ Puisque f est linéaire, f (0E ) = 0F . Donc 0E ∈ ker(f ). Ainsi, ker(f ) est non vide.
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✓ Montrons que ker(f ) est stable par combinaison linéaire.Soient u, v ∈ ker(f ) et λ, µ ∈ R. Montrons que λu + µv ∈ ker(f ).
✱ On a déjà u, v ∈ E et E étant un espace vectoriel, on obtient : λu + µv ∈ E .

✱ Ensuite :
f (λu + µv ) = λf (u) + µf (v ) par linéarité de f= λ × 0F + µ × 0F car u, v ∈ ker(f )= 0F

Ainsi :
λu + µv ∈ ker(f )

Conclusion : ker(f ) est un sous-espace vectoriel de E . ⋆

Un résultat très utile en pratique qui relie noyau et injectivité d’une application linéaire :
Cela ne veut pas dire que ker(f )est vide (un espace vectoriel n’estjamais vide) : mais seulement qu’ilest réduit au vecteur nul.

✘ Attention !
Propriété 6 Injectivité et noyau

f est injective si, et seulement si, ker(f ) = {0⃗E}

⋆ Démonstration : Raisonnons par double implication... ker(f ) = {x ∈ E / f (x) = 0F }
☞ Rappel...

⇒ Supposons que f est injective. Montrons que ker(f ) = {0E}. Raisonnons par double-inclusion.
⊃ Immédiat, car f est linéaire, donc f (0E ) = 0F . D’où :0E ∈ ker(f )
⊂ Soit x ∈ ker(f ). Ainsi :

f (x) = 0F linéarité de f= f (0E )
Par injectivité de f , on obtient : x = 0E . D’où :ker(f ) ⊂ {0E}

Par conséquent : ker(f ) = {0E}.
⇐ Supposons que ker(f ) = {0E}. Montrons que f est injective. f injective sur E :

∀x, x ′ ∈ E,
(
f (x) = f (x ′)⇒ x = x ′

)
☞ Rappel...

Soient x, x ′ ∈ E . On a :
f (x) = f (x ′) =⇒ f (x)− f (x ′) = 0F linéarité de f=⇒ f (x − x ′) = 0F=⇒ x − x ′ ∈ ker(f ) ker(f ) = {0E}=⇒ x − x ′ = 0E=⇒ x = x ′Par conséquent : f est injective.

⋆

On a, pour tous u⃗, v⃗ ∈ E :
f (u⃗) = f (v⃗ )
⇐⇒ f (u⃗)− f (v⃗ ) = −→0F

⇐⇒ f (u⃗ − v⃗ ) = −→0F

⇐⇒ u⃗ − v⃗ ∈ ker(f )
⇐⇒ ∃w⃗ ∈ ker(f ) / u⃗ = v⃗ + w⃗

Remarque

Exemples 3

E1 L’application f : P ∈ R[x ] 7−→ P ′ est un endomorphisme de R[x ] (la linéarité découle de la linéarité de ladérivation). Et : ker(f ) = R0[x ] ̸= {0R[x ]}
Conclusion : l’application f n’est pas injective.
E2 Considérons A =  1 1 12 1 0

−1 0 1
 et l’application f définie sur M3,1(R) par : ∀X ∈ M3,1(R), f (X ) = AX .

D’après le théorème 1, on sait que f est un endomorphisme de M3,1(R). Déterminons son noyau. Qu’en dire ?
Soit X = x

y
z

 ∈M3,1(R). On a :
X ∈ ker(f ) ⇐⇒ f (X ) = 03,1

⇐⇒ AX = 03,1
⇐⇒


x + y + z = 02x + y = 0
−x + z = 0
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⇐⇒
L2 ← L2 − 2L1
L3 ← L3 + L1


x + y + z = 0
− y − 2z = 0

y + 2z = 0
⇐⇒

L3 ← L3 + L2


x + y + z = 0
− y − 2z = 00 = 0

⇐⇒


x + y = −z

y = −2z
z = z

⇐⇒


x = z
y = 2z
z = z

⇐⇒ X = z

 1
−21
 La question porte sur X , on ter-mine donc avec X = ....

✍ Rédaction

Conclusion : ker(f ) = Vect 1
−21
 ; et puisque ker(f ) ̸= {03,1}, l’application f n’est pas injective.

En dimension finie (ce qui sera, sauf cas très exceptionnels, toujours le cas), la recherchedu noyau d’une application linéaire peut toujours se ramener à la résolution d’un systèmelinéaire homogène.

• En fait : Im(f ) = f (E ). C’estl’ensemble de toutes les imagesdes vecteurs de E par f ...
• On avait également vu que f estsurjective ssi Im(f ) = F . On nepeut pas faire mieux dans le casdes applications linéaires.

☞ Rappels...Définition 3 Image d’une application linéaire

L’image de f , notée Im(f ), est l’ensemble défini par :
Im(f ) = {v⃗ ∈ F / ∃ u⃗ ∈ E, v⃗ = f (u⃗)} = {f (u⃗) / u⃗ ∈ E

}
Voici une propriété que l’on utilisera pour déterminer l’image d’une application linéaire :

En pratique, on prend presquetoujours la base canonique de E ...
♣ Méthode !

Propriété 7

Im(f ) est un sous-espace vectoriel de F et même :si (e⃗1, e⃗2, ..., e⃗n) est une famille génératrice de E , alors Im(f ) = Vect(f (e⃗1), f (e⃗2), ..., f (e⃗n))
⋆ Démonstration :
• ✓ Par définition : Im(f ) ⊂ F .

✓ Puisque f est linéaire, on a f (0E ) = 0F . Donc 0F ∈ Im(f ). Ainsi, Im(f ) est non vide.
✓ Montrons que Im(f ) est stable par combinaison linéaire.Soient y, z ∈ Im(f ) et λ, µ ∈ R. Montrons que λy + µz ∈ Im(f ).

✕ On a déjà y, z ∈ F et F étant un espace vectoriel, on obtient : λy + µz ∈ F .
✕ Ensuite :Puisque y ∈ Im(f ), il existe u ∈ E , que l’on considère ensuite, tel que y = f (u).Puisque z ∈ Im(f ), il existe v ∈ E , que l’on considère ensuite, tel que z = f (v ).Par conséquent :

λy + µz = λf (u) + µf (v ) linéarité de f= f (λu + µv )
Or E est un espace vectoriel, donc λu + µv ∈ E . Et ainsi, λy + µz ∈ Im(f ).

Conclusion : Im(f ) est un sous-espace vectoriel de F .
• On a :

Ce résultat démontre égalementau passage qe Im(f ) est un sous-espace vectoriel de F ...
RemarqueIm(f ) = {f (x), x ∈ E} (e⃗1, ..., e⃗n) est génératrice de E ,

donc E = { n∑
k=1 λk e⃗k , (λ1, ..., λn) ∈ Rn

}= {f
( n∑

k=1 λk e⃗k

)
, (λ1, ..., λn) ∈ Rn

}
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= { n∑
k=1 λk f (e⃗k ), (λ1, ..., λn) ∈ Rn

}
= Vect(f (e⃗1), ..., f (e⃗n))

⋆

Exemple 4

Démontrons que l’application f : (x
y

)
7−→

 x3x
x − y

 est linéaire et déterminons son image. Qu’en dire ?
• Posons A = 1 03 01 −1

 de sorte que, pour tout (x
y

)
∈M2,1(R), on a : f

(
x
y

) = A
(

x
y

).
Par conséquent, d’après le théorème 1, l’application f est une application linéaire de M2,1(R) dans M3,1(R).

• On sait que la famille ((10) ,
(01)) est génératrice deM2,1(R), car c’en est même la base canonique. Donc :

Im(f ) = Vect(f
(10) , f

(01))
Or

f
(10) = 131

 ; f
(01) =  00

−1


Conclusion : Im(f ) = Vect131
 ,

 00
−1
.

• On remarque alors que dim (Im(f )) = 2, donc Im(f ) ̸=M3,1(R).
Conclusion : f n’est pas surjective.

On pourrait également exhi-ber un vecteur de M3,1(R) quin’a pas d’antécédent par f ...111
 convient (et une infinité

d’autres...).

Remarque

Petite partie à la limite du programme : espaces vectoriels isomorphes et dimensionSoient E un espace vectoriel, n un entier naturel non nul et e⃗1, e⃗2..., e⃗n des vecteurs de E . On pose f l’applicationsuivante :
f : Rn −→ E(x1, ..., xn) 7−→

n∑
i=1 xie⃗i

Au passage, (e⃗1, e⃗2, ..., e⃗n) estl’image par f de la base cano-nique de Rn ...
Remarque

Sans difficulté, on vérifie que f ∈ L (Rn, E ). De surcroît :
• par définition, f est surjective si, et seulement si, la famille (e⃗1, e⃗2..., e⃗n) est génératrice de E ;
• par définition : ker(f ) = {0Rn} si, et seulement si, la famille (e⃗1, e⃗2..., e⃗n) est libre. D’après la propriété 6, f estdonc injective si, et seulement si, la famille (e⃗1, e⃗2..., e⃗n) est libre.On en déduit donc : f est un isomorphisme de Rn dans E si, et seulement si, (e⃗1, ..., e⃗n) est une base de E . En particulier,si f est un isomorphisme, alors dim(E ) = n. On retient donc pour l’instant :

si Rn et E sont isomorphes, alors dim(E ) = n
On dit que deux EV sont iso-morphes lorsqu’il existe un iso-morphisme entre les deux.

Vocabulaire

La réciproque de cette implication est-elle encore valable ? Oui, c’est bien le cas !Supposons que dim(E ) = n, considérons (e⃗1, ..., e⃗n) une base de E et posons f : (x1, ..., xn) 7−→ n∑
i=1 xie⃗i .D’après ce qui précède, puisque (e⃗1, ..., e⃗n) une base de E , f est un isomorphisme. D’où :

si dim(E ) = n, alors E est isomorphe à Rn

On obtient ainsi le théorème suivant :
Théorème 2 Isomorphisme et dimension

dim(E ) = n si, et seulement si, E est isomorphe à Rn (ou Mn,1(R)...) Et par conséquent : dim(E ) =dim(F ) ssi E et F sont iso-morphes.
☞ Pour info...

L’impact est considérable : tout espace vectoriel de dimension finie est isomorphe à un Rn(ouMn,1(R)). Autrement dit : tout vecteur d’un espace vectoriel E de dimension finie peutêtre vu comme une matrice ligne (ou colonne) : la matrice de ses coordonnées, une foisune base de E choisie.
Ce résultat est à la fois puissantet décevant : tous les EV de di-mension finie n ont la même têteque Rn . C’est génial et peu origi-nal à la fois...

Remarque
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III Théorème du rang et conséquences
Définition 4 Rang d’une application linéaire

Le rang de f , noté rg(f ), est la dimension de Im(f ).
On a immédiatement :

Par conséquent, si dim(E ) <dim(F ), alors f ne peut pas êtresurjective !
Remarque

Propriétés 8

Soient E et F deux espaces vectoriels de dimension finie et f ∈ L (E, F ).
P1 rg(f ) ⩽ min ( dim(E ), dim(F ))
P2 f est surjective si, et seulement si, rg(f ) = dim(F )

⋆ Démonstration :
P1. • Par définition, rg(f ) = dim (Im(f )). Or Im(f ) est un sous-espace vectoriel de F , qui lui est de dimension finie.Ainsi, Im(f ) est de dimension finie et donc le rang de f est fini.

• Montrons que rg(f ) ⩽ dim(E ) et rg(f ) ⩽ dim(F ). x ⩽ min(a, b) ⇐⇒
 x ⩽ aet

x ⩽ b

À retenir...

✱ D’après ce qui précède, on a déjà : rg(f ) ⩽ dim(F )

✱ Notons n = dim(E) et considérons (e1, e2, ..., en) une base de E . On sait que :
Im(f ) = Vect(f (e1), f (e2), ..., f (en))

Autrement dit, la famille (f (e1), f (e2), ..., f (en)) est génératrice de Im(f ). • Si F est une famille libre de
E , alors Card(F ) ⩽ dim(E ).
• Si F est une famille géné-ratrice de E , alors Card(F ) ⩾dim(E ).

☞ Rappels...

Et par conséquent :
Card(f (e1), f (e2), ..., f (en)) ⩾ dim (Im(f ))

On a ainsi : dim(E ) ⩾ rg(f )Par conséquent : rg(f ) ⩽ ( dim(E ); dim(F ))
P2. On sait que Im(f ) est un sous-espace vectoriel de F . Ainsi :

Im(f ) = F ⇐⇒ dim (Im(f )) = dim(F )
Autrement dit : Im(f ) = F ⇐⇒ rg(f ) = dim(F )Mais, par définition, f est surjective si, et seulement si, Im(f ) = F ...
Conclusion : f est surjective si, et seulement si, rg(f ) = dim(F ).

⋆

Et voici le fameux théorème, un des plus importants d’algèbre linéaire en dimension finie :
Théorème 3 Théorème du rang

Si E est un espace vectoriel de dimension finie et f : E −→ F une application linéaire, alors :
dim(E ) = dim ( ker(f )) + rg(f )

⋆ Démonstration : Allez voir en maths appro ! ⋆

C’est la dimension de l’espace dedépart qui entre en jeu !
✘ Attention !

♣ Méthode 1 ♣ Pour déterminer noyau et image d’une application linéaire :
1. on commence par celui qui nous semble le plus simple (ou celui qui est demandé en premier),
2. on utilise le théorème du rang pour avoir la dimension de l’autre, et le déterminer par ensuite.
Exemple 5Reprenons l’application f de Exemples 3 - E2. Quel est son rang ?Puisque f est un endomorphisme de M3,1(R), on a, d’après le théorème du rang :dim (M3,1(R))) = dim ( ker(f )) + rg(f )
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Or, on avait ker(f ) = Vect (1− 21). Ainsi, la famille  1
−21
 est une famille de ker(f ) qui est :

✓ génératrice de ker(f ),
✓ libre car constituée d’un unique vecteur non nul.

Par conséquent, la famille  1
−21
 est une base de ker(f ) et donc dim ( ker(f )) = 1.

Conclusion : rg(f ) = 2. On pourrait également déterminerIm(f ) pour avoir rg(f )...
Remarque

Conséquence importante du théorème du rang :

Cas particulier important : cettepropriété est vraie pour les endo-morphismes en dimension finie.
Important !

Propriété 9

Soient E et F deux espace vectoriels de dimension finie et f ∈ L (E, F ).Si dim(E ) = dim(F ) = n, alors :
f injective f surjective

f bijective
Autrement dit, si dim(E ) = dim(F ) = n, alors :

ker(f ) = {−→0E} rg(f ) = n

f bijective
⋆ Démonstration : Supposons que dim(E ) = dim(F ).
• Montrons que l’injectivité de f équivaut à sa surjectivité.Puisque E est de dimension finie, d’après le théorème du rang :

dim(E ) = dim ( ker(f )) + rg(f )
Ensuite :

• Le singleton {0E} est le seulsous-espace vectoriel de E dedimension 0.
• Im(f ) est un ssev de F
• le seul ssev de F de dimensionégale à dim(F ) est F lui-même

☞ Rappels...

(
f est injective) ⇐⇒ ker(f ) = {0E}

⇐⇒ dim ( ker(f )) = 0 théorème du rang⇐⇒ rg(f ) = dim(E ) dim(E ) = dim(F )⇐⇒ rg(f ) = dim(F )
⇐⇒ Im(f ) = F
⇐⇒

(
f est surjective)

• Montrons que f est injective si, et seulement si, f est bijective.
⇐ On sait déjà que la bijectivité de f implique son injectivité (par définition).
⇒ D’après ce qui précède, l’injectivité de f implique sa surjectivité. Par conséquent, si f est injective, elle estégalement surjective et donc bijective. L’injectivité de f implique donc sa bijectivité.

Conclusion : f est injective si, et seulement si, f est bijective.
• De la même façon, on démontre que f est surjective si, et seulement si, f est bijective.

⋆

Exemple 6

Démontrons que l’application f : x
y
z

 7−→  x + y + z
x − z2x + y + z

 est un automorphisme de M3,1(R).

• Posons A = 1 1 11 0 −12 1 1
 de sorte que pour tout x

y
z

 ∈M3,1(R), on a f

x
y
z

 = A

x
y
z

.
Ainsi, d’après le théorème 1, f est un endomorphisme de M3(R).
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• Soit x
y
z

 ∈M3,1(R). On a :
x

y
z

 ∈ ker(f ) ⇐⇒ f

x
y
z

 = 000


⇐⇒


x + y + z = 0
x − z = 02x + y + z = 0

⇐⇒
L2 ← L2 − L1
L3 ← L3 − 2L1


x + y + z = 0
− y − 2z = 0
− y − z = 0

⇐⇒
L3 ← L3 − L2


x + y + z = 0
− y − 2z = 0

z = 0
⇐⇒


x + y + z = 0
− y − 2z = 0

z = 0
⇐⇒


x = 0
y = 0
z = 0

⇐⇒

x
y
z

 = 000


On en déduit : ker(f ) = {03,1}Donc f est injectif.
Conclusion : puisque f est un endomorphisme injectif de M3(R), f est un automorphisme de M3,1(R).
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