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(CHARTREUX

ALGEBRE LINEAIRE

APPLICATIONS LINEAIRES ENTRE ESPACES VECTORIELS

INTRODUCTION...

Quiconque parle d'applications linéaires en dimension finie pense nécessairement au célébre Théo-Raym Durrant (1843-2017, israelo-argentino-
chinois), dont un trés célebre théoréeme porte son nom...

Sa contribution, tout comme celle de Izo Morfyssm (1917-2043, islando-arménien), fut considérable dans l'étude des applications linéaires. En effet,
on leur doit un remarquable résultat sur le dual de lespace vectoriel des classes déquivalences des distributions tempérées modulo les formes
quadratiques réelles : il est isomorphe au corps des matrices nilpotentes sur l'anneau Z/7Z. La démonstration de ce théoreme repose, en partie, sur
'étude des formes modulaires définies sur la Lemniscate de Kolmogorov-Smirnov, a valeurs dans le demi-plan de Poincaré. Ce résultat, qui ne sera pas
démontré dans ce cours (la marge étant trop étroite pour la contenir) pourrait en revanche faire l'objet d'un probléme de "TOP3": un grand classique donc.

Bref, nous commencerons modestement par l'étude des applications linéaires (les mémes qu'en quatrieme en fait)..
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POUR BIEN DEMARRER...
1. Soient E, F deux ensembles et f : E — F une application.

e Définition : f est injective lorsque V(x, x') & £, (/(x) = [[x) == x = )
e Définition : f est surjective lorsque Vy < /-, dlx € £ [y = 1(x)
o Définition : f est bijective lorsque Vy = F, Jlx « £ [y = (x)

e Caractérisations de la bijectivité de f :

f est bijective si, et seulement si, f est injective et surjective
si, et seulement si, Vy € F, AIx € E | y = f(x)

si, et seulement si, il existe g : F — E telle que gof =idg et fog = idf

2. La famille (&, &5, ..., 8,) est une famille libre d'un espace vectoriel E lorsque :

V(A ... Ay € RY), Z/‘m =0p = Yk

k=1

m

[1;n], A

3. La famille (&4, &, ..., €,) est une famille génératrice d'un espace vectoriel £ lorsque :

n
Vi€ E 3k, .. A)ER | T=) Mé
k=1

4. La famille (&1, &5, ..., &,) est une base d'un espace vectoriel £ lorsque :

Vi€ E, Ak, ., A)ER [ T=) Aé

5. La dimension d'un espace vectoriel est le cardinal commun a toutes ses bases.

6. Soit E un espace vectoriel de dimension finie. Caractérisation des bases.

Une famille de E est une base si, et seulement si, elle est libre et génératrice
si, et seulement si, elle est libre et de cardinal égal a dim(E)

si, et seulement si, elle est génératrice et de cardinal égal a dim(E)

7. Soient E un espace vectoriel et F un sous-ensemble de E. Définition : F est un sous-espace vectoriel de E lorsque :
v FCE;
v F + @ (on vérifie que 0f € F);
v YA ) €R? V() € B2 Ai
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Dans tout ce chapitre, £ et F sont des espaces vectoriels réels.

| DEFINITION ET PREMIERS EXEMPLES

DEFINITIONS 1 APPLICATION LINEAIRE

En gros...
Soit f : E — F une application. On dit que f est une application linéaire lorsque : Une application linéaire est une
application compatible avec les
VA 1 ER, Ya,veE, f()\lj+ U‘7) = )Lf(LT) + Uf(‘7) combinaisons linéaires |
% Notation
Un endomorphisme de E est une application linéaire de £ dans E. On note Z(E, F) lensemble
des applications linéaires de £
Un isomorphisme est une application linéaire bijective. dans £ et Z(E) = Z(E.E)
(l'ensemble des endomorphismes
Un automorphisme de E est un endomorphisme de E bijectif. de £).
Viennent naturellement quelques propriétés immédiates :
Soit f € ZL(E, F) ¥ Astuce du chef ¥
e Les deux premieres propriétés
— — . .
f(OE) — OF 4 peuvent aussL servir pour montrer
qu'une application n'est pas li-
néatre...

VAER, VT € E, f(AT) = Af(d); et en particulier : V@ € E, f(—a) = —f(d)

Yn e N*, YA, Ao, Ay ER, Vi, @, 0, €E ¢ f (ZA@) = Af(d).
i=1 i=1

*
DEMONSTRATION :

P1. Puisque f est une application linéaire, on a : VA, y € R, Vi,V € E, (AT + pv) = AF(d) + pf (V).
—
Enprenant A=p=0et d=V=0g0na

, — —
AT+ pv =0g ; A(d)+pf(V) =0
— —
Conclusion : f(0g) = Of.
P2. Soient A € Ret i € E. Puisque f est une application linéaire, on a: Vp € R, YW & E, f(AT+ pv) = Af(d) + pf(V).

N —
En prenant p=0et V=0g 0na:

5

AT+ v = Al (D) + pf(V) = AF(@)

Conclusion : f(Ad) = Af(d). D'ou le cas particulier, en prenant A = —1.
P3. Procédons par récurrence...

e Initialisation. Pour n = 1 : immédiat d'apres P2.

e Hérédité. Soit n € N*. Supposons VA, Ay, ..., A, € R, Vi, AT,

Mm
—_—
™1
N~
=
—_— —
I
™1
>
Py

n+1 n+1
Montrons VA, Ay, ..., Ayt € R, YTy, T, ...lns € E : f (th) = > Af(i.

Soient A1, Ay, ..., A,y ER et Uy, U, ... 0,4, € E.Ona:

/1 1
f Azll, =f Al 4 Anyr Uni
— i ‘ / car f est linéaire

+//r \f(“HM)

) =
AUy

I
—
—_—

/ hypothese de récurrence

+//7 17[(“)/7\1)

\l

OCEN

L'hérédité est ainsi établie.

n n
Conclusion : Vn € N*, YA, A, ... A, €R, Vi, 0o, ... 0, € E ¢ f ( /\f,) = Z/ﬂf(ﬁ/)»
[ :
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| ExXempPLES 1 |

L'application @ € E —— @ est un endomorphisme de £, et méme un automorphisme de E : cest l'identité,

notée idg.
E2 | L'application 7 € £ +—— OF est une application linéaire de E dans F : cest l'application linéaire nulle.
[ E3 | L'application P € R[X]+— P’ est un endomorphisme de R[X]. Remarque
E4 | Les applications linéaires de R dans R sont les applications f : x — ax, avec a € R. ﬁuuaetlr;c;gﬁ“ on sait ca depuis la
E5 | Lapplication A € M, ,(R) — 'A est une application linéaire. .
— Pourquoi ?
E6 [ L'application qui, a une variable aléatoire, associe son espérance, est une application linéaire. En revanche, | on sait que E(aX + bY) =
' eati PN ; Aatoi ; ; ! i eati indai aE(X) + bE(Y). Mais, de fagon
l'application qui, a une variable aléatoire, associe sa variance, n'est pas une application linéaire. ginérale, V(oX + bY) 4 aV[X) +
Considérons application f : (x, y) — (2x 4 y, x — y). Démontrons que f est un endomorphisme de R%. bV(Y)..

v/ Onadéa:Vx y) €R? f(x y) €R%
v Montrons que f est linéaire.
Sotent A, € Ret (x,y), (¥, y) € R%. Montrons que f(A(x, y) + p(x', y')) = Af(x, y) + pf (¥, y).
Ona:
FAX, y) + p(X' y)) = F(Ax + X', Ay + py')
20 + px') + Ay + py', Ax + px’ — (Ay + py'))
(2x + ) + 12X + y'), Ax = y) + p(x" = ¢))
=A2x+y. x—y)+ X +y X =)
= Af(x,y) + uf(x', ¢')

A

Donc £ est linéaire.

|C0nclusi0n : lapplication f : (x, y) — (2x + y, x — y) est un endomorphisme de R’.

Considérons l'application f définie sur R? par : Y(x, y) € R?, f(x,y) = (3x — y, x + 5y + 1). Montrons que f
n'est pas une application linéaire.
Remarquons que f(0,0) # (0, 0).

|Conclusion : f n'est pas linéaire. |

Considérons l'application f qui, a toute fonction polynomiale P € R;[x| associe la fonction f(P) définie par :
Vx € R, f(P)(x) = P(x) — P(x + 1). Montrons que f est une application linéaire de Rs[x] dans Ry[x] Confusion dobiete |
onfusion d’objets !
v Soient A, € R et P, Q € Rx]. Montrons que (AP + pQ) = Af(P) + uf(Q). 4@,0) est une fonction | T
Autrement dit, montrons : Vx € R, f(AP + pQ)(x) = Af(P)(x) + pf(O)(x).
Soit x € R. Ona:

FIAP + pQ)(x) = (AP + pQ)(x) — (AP 4 pQ)(x + 1)
= AP(x) + pO(x) — AP(x + 1) — pO(x + 1)
= MP(x) = P(x+1)) +u(0(x) — O(x + 1))
= M(P)(x) + pf(Q)(x)

/ linéarité de l'évaluation en x et x + 1

Donc f est linéaire.

v Soit P x+—— ax’ 4+ bx’ 4+ cx + d. On a, pour tout x € R :

f(P)(x) = ax® + bx’ + cx +d — (0(X+ 1 +bx+ 1) +cx+1) +d)
=a(—(x+17) +b(¥* = (x+ 1)) + c(x— (x+ 1))
=a(-3x" = 3x—1)+b(-2x—1)—¢
= 3ax’ —(3a +2b)x —a —b —c

Par conséquent : .
‘ q v Pour s’entrainer...

f(P) € Rolx] En définissant f sur R,[x] (avec

. . n > 1), on peut démontrer que
Conclusion : VP € Rslx], f(P) € Rilx] fegt u21e apF;llcatlon linéalr(l de

R, [x] dans R,_1[x].

|C0nclusi0n : f est une application linéaire de Rs[x] dans Ry[x].

Considérons l'application f qui, a toute fonction polynomiale P € R,[x] associe la fonction f(P) définie par :
¥x € R, f(P)(x) = P(x)* + P'(x). Montrons que f n'est pas une application linéaire.
Considérons la fonction polynomiale P : x —— x. On a ainsi, pour tout x € R :

—HP)X) = (2 +1) 5 F(—=P)(x) = x* =1

Les fonctions polynomiales x — x? — 1 et x —> —(x” 4 1) sont différentes. D'oli : f(—P) # —f(P).

Conclusion : f n'est pas linéaire.
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E11 | Notons ¢ l'application définie sur #(R, R) qui a toute fonction f € € (R, R) associe la fonction ¢(f) définie
2

X Confusion d’objets !
sur R par : Vx € R, ¢(f)(x) = / tf(t)dt. Montrons que ¢ est un endomorphisme de € (R, R). ﬁ(” est une fonction ! T
0

v Soit f € €(R,R). La fonction t —— tf(t) est un produit de deux fonctions continues sur R, elle est donc
également continue sur R. Par conséquent, la fonction t — tf(t) admet des primitives, qui sont "' sur R.
Notons G l'une delles. On a ainsi, pour tout x € R :

o(f(x) = /‘X tf(t)dt
= G(x) = G(1)

Or G est €' sur R, donc par composition, la fonction x — G(x?) est €' sur R.
Par conséquent, la fonction ¢(f) est €' sur R, donc en particulier continue sur R.
Conclusion : ¢ est définie sur (R, R) et a valeurs dans ¢ (R, R).

v/ Montrons que ¢ est linéaire. Confusion d’objets !
Sotent A,y € Ret f, g € €(R,R). Montrons que @(Af + pg) = Ap(f) + pg(g). Autrement dit, montrons : +7On veut établir une égalité dej
fonctions |
Vx € R, @A + pg)(x) = A(e(l) + belg) ) (x)
On a, pour tout x € R :
QA + ug)(x) = / t(Af(t) + pg(t))dt
1 / par linéarité de l'intégrale
:/l/ rf(f)(if+;// tg(t)dt
1 1
= Ap(X)f(x) + te(g)(x)
On a établi :
Yx € R, (A + ug)(x) = Ap(f)(x) + pe(g)(x)
Dot :
PAf + pg) = Ag(f) + pe(g)
Conclusion : ¢ est linéaire.
Conclusion : ¢ est un endomorphisme de (R, R).
Vocabulaire
On dira que f est l'application
linéaire canoniquement associée a
Pour toute matrice A € M, ,(R), l'application Mpa®R) - — Moi(R) est une application linéaire de A

M, 1(R) dans M, 1(R).

*

|—DE’MON5TRAT|0N :Soit Ae M, ,(R).
e Puisque A€ M, ,(R), on a déja : VX € M,1(R), f(X) € M,1(R).
e Montrons que f est linéaire.

Soient A, 1 € Ret X, Y € M, (R). Montrons que f(AX + pY) = Af(X) + pf(Y).
Ona:

FAX + pY)

AAX + 1Y)
— JAX + pAY
— M(X) + pf(Y)

Donc f est linéaire.
*

| EXEMPLES 2 |
X X+y+z
Démontrons que l'application f: [y | — ( N 3 y )
z
X X 11 1
Soit [y | € M34(R). Posons X = [y | et A= (1 _ 0) de sorte que f(X) = AX.

z z

Conclusion : l'application f est une application linéaire de M3 1(R) dans M, 1(R) et la matrice A est sa matrice
canoniquement associée.
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X —2X+y+z
Démontrons que l'application f : x — |y | — | x—2y + 2z | est un endomorphisme de M;31(R). Soit

z X+y—2z
X X 2 1 1
y| €Ms51(R). Posons X = [y | etA=| 1T =2 1 de sorte que f(X) = AX.
z z 1 1 2

Conclusion : l'application f est un endomorphisme de M5 1(R) et la matrice A est sa matrice canoniquement
associée.

Autrement dit :

Une combinaison linéaire d'ap-
PROPRIETES 2 STRUCTURE DE Z(E, F) plications linéaires est encore
une application linéaire... Et la
composée de deux applications li-
néaires est encore une application
linéaire.

Soient £, F, G trois espaces vectoriels réels.

(X(E, ), +, ) est un espace vectoriel réel.
Vf e Z(E,F)Vg € Z(F,G), gof e Z(E,G). Conséquence

Sif € Z(E), alors pour tout
neN, " e ZL(E) ol f" désigne

% , fof..of.
DEMONSTRATION : n fois

P1. Montrons que (.Z(E, F),+, ) est un sous-espace vectoriel de l'espace vectoriel des applications de E dans F.
v Par définition, Z(E, F) est inclus dans l'espace vectoriel des applications de E dans F.
v L'application nulle est linéaire, donc Z(E, F) est non vide.
v Solent A, peRetf,ge Z(E,F). Montrons que Af + g € Z(E, F).
* On sait déja que Af + pg est une application définie sur E et a valeurs dans F, car f et g le sont.

* Montrons que Af 4 pg est linéaire.
Soient a,b € R et &,V € E. Montrons que (Af + pg)(ad + bV) = a(Af + pg)(@) + b(Af + ug)(V).
On a, par linéarité de l'évaluation en ai + bV :

(Af + pg)(ad + bv) = Af(ad + bV) + pg(ad + bv)
Aaf(d) + bf(V) + p(ag(d) + bg(V)
a(AF(@) + pg(@)) + b(AF(@) + ug(@)) ()
= a(Af + pg)(d) + b(Af + pg)(v)

() f et g sont linéaires

J linéarité des évaluations en 7 et V

Donc Af + ug est linéatre.
Par conséquent :
M+ ug e Z(EF)
Conclusion : Z(E, F) est un sous-espace vectoriel de l'espace vectoriel des applications de E dans F; Z(E, F)
est donc un espace vectoriel.
P2. Soient f € Z(E,F) et g € Z(F, G). Montrons que go f € Z(E, G).
e |'application g o f est bien définie sur E et a valeurs dans G.

e Montrons que g o f est linéaire.
Soient A, 1 € R et &,V € E. Montrons que g o f(Ad + pV) = Ag o f(d) + ug o (V).
Ona:

g o F(AT + pv) = g(F(AT + uV))
_ g (M) + (1) J lindarité de f
:/\g(f(ﬁ)) +ug(f(\7)) J linéarité de g
= Ag o f(i) + pg o f(V)

Donc g o f est linéaire.
Conclusion : go f € Z(E, Q).

PROPRIETE 3

Si f est un isomorphisme de E dans F, alors f~' est un isomorphisme de F dans E.

= Rappel...
* St f est une application bijective
DEMONSTRATION : Supposons que f est un isomorphisme de £ dans F. de A dans B, alors £~ est bijec-
tive de B dans A; et on a aussi :

e Puisque f est bijective de £ dans F, on sait que f~' est bijective de F dans E. ,
fof'=ids ; flof=idy
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e Montrer que £~ est une application linéaire de F dans E.
Soient A, y E Retd,veF.
Puisque &,V € F et que f est bijective de E dans F, il existe des uniques vecteurs X et § dans £, que nous
const(lerons ensuite, tels que & = f(X) et V = f(g).
On a ainsi :

FHAG + pv) = £ (AF(9) + pf(G))
/ linéarité de f
=AY+ pg)) ,
\ f of = ld;
= A+ uy j

) + (@) f(X) = @ et f(§f) = V, donc X = f M) et § = (V)

L'application /' est donc linéaire.

Conclusion : =" est un isomorphisme de F dans E. N

Pour finir sur cette premiére partie, un résultat parfois utile :

PROPRIETE 4

A retenir...
Deux applications linéaires sur £ sont égales si, et seulement si, elles coincident sur une base de E. En particulier, une application
Autrement dit, st en notant n = dim(E) et considérons une base (&, &5, ..., &,) de £, on a: linéaire est entierement définie

par l'image qu'elle renvoie des
vecteurs d'une base de l'espace
vectoriel de départ.

(Vx € E, f(x) = g(x)) < (Vie [1;n], f(&)=g(&))

*
DEMONSTRATION :
Immédiat.

[=] Supposons : Vi € [1;n], f(€) = g(&). Montrons VX € E, f(X) = g(x).
SOT X € E. Puisque (é,65,...,8,) est une base do E, il existe des uniques réels Ay, Ay, ..., A, tels que :

X = > A:€:. On a alors :
=1

linéarité de f

1 hypothese
n
- Z AzQ(é) ()

linéarité de g

i Remarque
. (X*) Puisque l'unicité des A; n'a
g pas été utilisée, seul le carac-
L, . . tere générateur de la famille
On a ainsi établi : VX € E, f(X) = g(X). (@1, 8, ..., &) sufit

+

Il NoYAU & IMAGE D'UNE APPLICATION LINEAIRE

Dans toute la suite, f désigne une application linéaire de £ dans F.

DEFINITION 2 NOYAU D'UNE APPLICATION LINEAIRE

Le noyau de f, noté ker(f), est l'ensemble défini par :

ker(f) = {d € E | f(&) = O }

PROPRIETE 5

ker(f) est un sous-espace vectoriel de E.

*
DEMONSTRATION :

v Par définition : ker(f) C E.
v Puisque f est linéaire, f(0g) = Or. Donc Og & ker(f). Ainsi, ker(f) est non vide.
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v' Montrons que ker(f) est stable par combinaison linéaire.
Soient u, v € ker(f) et A, u € R. Montrons que Au + pv € ker(f).

#* On a déja u,v € E et E étant un espace vectoriel, on obtient : Au + pv € E.

* Ensuite :
f(Au + pv) = Af(u) + pf(v) par linéarité de f
=Ax0F+px0f car u, v € ker(f)
=0f
Ainsi :
Au+ pv € ker(f)
Conclusion : ker(f) est un sous-espace vectoriel de E. N

Un résultat tres utile en pratique qui relie noyau et injectivité d'une application linéaire :

X Attention !
Cela ne veut pas dire que ker(f)
est vide (un espace vectoriel n'est
jamais vide) : mais seulement qu'il
est réduit au vecteur nul.

PROPRIETE 6 INJECTIVITE ET NOYAU

f est injective si, et seulement si, ker(f) = {0}

* = Rappel...
DEMONSTRATION : Raisonnons par double tmplication.. ﬁer(f) —IxeE/f(x) = 0F}

Supposons que f est injective. Montrons que ker(f) = {O¢}. Raisonnons par double-inclusion.
Immédiat, car 1 est linéaire, donc f(0z) = 0. Dol :

OF € ker(f)
Soit x € ker(f). Ainst :

fx) = OF
linéarité de f
_ f(OF) / i ite de

Par injectivité de f, on obtient : x = 0. D'ou :

ker(f) C {O¢}

= Rappel...
f injective sur E :

Vx, X' € E, (f(x) = f(x) = x =X

Par conséquent : ker(f) = {0¢}.
Supposons que ker(f) = {0¢}. Montrons que f est injective. Soient x,x" € £. On a :

f(x) = f(X) = f(x) = (x') = 0f

= f(x —x) = 0F J linéarité de f
= x — x' € ker(f)
J ker(f) = {0¢} — Remarque

= x—x =0 On a, pour tous &,V € E :

= x =X fd) = f(v)

—*r —s fli—v) =07

= 0 — Ve ker(f)

| EXEmPLES 3 | = I cker(f) | T=V+W

—

, S F
Par conséquent : f est injective.

L'application f : P € R[x] —> P’ est un endomorphisme de R[x] (la linéarité découle de la linéarité de la
dérivation). Et :
ker(f) = R()[X] :/: {OR[X }
Conclusion : l'application f n'est pas injective.
11
Considérons A = [ 2 1 0] et Uapplication f définie sur Ms,(R) par : ¥X € Ms1(R), F(X) = AX.
-1 0 1
D'aprés le théoréme 1, on sait que f est un endomorphisme de Ms;(R). Déterminons son noyau. Qu'en dire?
X
Soit X = |y | €M34(R).Ona:
V4
X & ker(f) = f(X) =034
= AX = 034
x+y+z=0
= 2x+y =0
—X +2z=0
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x+y+ z=0
—y—2z=0
y+2z=0
x+y+ z =0
—y—2z =0

X+y =—z
= y = -2z
zZ=2z
X =2z
= y =2z
zZ =127
1 # Rédaction ——
— X=z|-=-2 ( La question porte sur X, on ter-
1 mine donc avec X = ...

1
Conclusion : ker(f) = Vect -2 ; et puisque ker(f) # {051}, Uapplication f n'est pas injective.
1

En dimension finie (ce qui sera, sauf cas tres exceptionnels, toujours le cas), la recherche
du noyau d'une application linéaire peut toujours se ramener a la résolution d'un systeme
linéaire homogene.

DEFINITION 3 IMAGE D'UNE APPLICATION LINEAIRE

5 Rappels...
e En fait : Im(f) = f(E). Clest
'ensemble de toutes les images
des vecteurs de E par f..
Im(f) = {\76 Fl3deE, v= f(LT)} = {f(g) | i e E} o On avait également vu que f est
' surjective sst Im(f) = F. On ne
peut pas faire mieux dans le cas

Voici une propriété que L'on utilisera pour déterminer l'image d'une application linéaire : des applications linéaires.

L'image de f, notée Im(f), est l'ensemble défini par :

PROPRIETE 7

Im(f) est un sous-espace vectoriel de F et méme :

& Méthode !
si (81,85, ..., €,) est une famille génératrice de E, alors Im(f) = Vect(f(&), (&), ..., f(€,)) &ngz‘i‘igig’:eF;;e:fnﬁqrqu;:E"_

*
|—DE’MON5TRAT|0N :
e v/ Par définition : Im(f) C F.

v Puisque f est linéaire, on a f(0g) = Or. Donc O & Im(f). Ainsi, Im(f) est non vide.

v Montrons que Im(f) est stable par combinaison linéaire.
Soient y,z € Im(f) et A,y € R. Montrons que Ay + pz € Im(f).

x On a déja y,z € F et [ étant un espace vectoriel, on obtient : Ay + pz € F.

x Ensuite :
Puisque y € Im(f), il existe u € E, que l'on considere ensuite, tel que y = f(u).
Puisque z € Im(f), il existe v € E, que l'on considere ensuite, tel que z = f(v).
Par conséquent :

Ay + pz = Af(u) + pf(v)
. J linéarité de f
= f(Au + pv)

Or E est un espace vectoriel, donc Au + pv € E. Et ainsi, Ay + pz € Im(f).
Conclusion : Im(f) est un sous-espace vectoriel de F.

e Ona:

Remarque ————
{f(x), x € E} ) : ]
. L Ce résultat démontre également
(€1, ..., @) est génératrice de E,
n . au passage ge Im(f) est un sous-
f § ME |, (M, A) ER” donc £ = {5 M, (Moo d) € R“} espace vectoriel de £

k=1

Im(f)
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| EXEMPLE 4 I

, ) S X S , . . . .
Démontrons que l'application f : (g) — 3x est linéaire et déterminons son image. Qu'en dire?

X—y
1T 0
X X X
e Posons A= |3 0 | de sorte que, pour tout ( ) € M5 (R),ona:f ( ) =A ( )
(- y y y

Par conséquent, d'apres le théoreme 1, U'application f est une application linéaire de M, 1(R) dans M5;(R).

e On sait que la famille ( (g)) ) (O

1 ) ) est génératrice de M 1(R), car c'en est méme la base canonique. Donc :

Im(f) = Vect (’ ((1) ! <?))

Or
1 0
f 1 — (3 o f 0) _ 0
0 1 ' 1) 1
o Remarque
1 0 On pourrait également exhi-
N y - ber un vecteur de M3 1(R) qui
Conclusion : Im(f) = Vect 31,1 0 . na pas d'antécédent par ..
1 —1 1
) 1| convient (et une infinité
e On remarque alors que dim (Im(f)) = 2, donc Im(f) + M54 (R). 1
Conclusion : f n'est pas surjective. dautres...).
PETITE PARTIE A LA LIMITE DU PROGRAMME : ESPACES VECTORIELS ISOMORPHES ET DIMENSION
Soient E un espace vectoriel, n un entier naturel non nul et &, &;..., &, des vecteurs de E. On pose f l'application
suivante :
f: R" — E Remarque
n Au passage, (€1, €2, ..., €,) est
-8 'image par f de la base cano-
X1, 0 X — X; € ge p
b n) 21 o nique de R"...
i

Sans difficulté, on vérifie que f € Z(R", E). De surcrotlt :
e par définition, f est surjective si, et seulement si, la famille (&, &5..., &,) est génératrice de E;
)

e par définition : ker(f) = {Orn} si, et seulement si, la famille (&7, &,..., &,) est libre. D'aprés la propriété 6, f est
donc injective si, et seulement si, la famille (&7, &;..., &,) est libre.

On en déduit donc : f est un isomorphisme de R" dans E si, et seulement si, (&1, ..., €,) est une base de E. En particulier,

st f est un isomorphisme, alors dim(£) = n. On retient donc pour l'instant : Vocabulaire

On dit que deux EV sont iso-
- - - morphes lorsqu'il existe un iso-
|Sl R" et E sont isomorphes, alors dim(E) = n | morphisme entre les deux.

La réciproque de cette implication est-elle encore valable ? Oui, c'est bien le cas!
Supposons que dim(E) = n, considérons (€1, ..., €,) une base de E et posons f : (xy, ..., x,) —> X; 6.

D'aprés ce qui précede, puisque (€7, ..., €,) une base de E, f est un isomorphisme. D'ou :

|si dim(E) = n, alors E est isomorphe a R” |

On obtient ainsi le théoréme suivant :

THEOREME 2 ISOMORPHISME ET DIMENSION w= Pour info...
Et par conséquent : dim(E) =
< dim(F) ssi E et F sont iso-

dim(E) = n si, et seulement si, £ est isomorphe a R" (ou M, 1(R)...)

morphes.
L'impact est considérable : tout espace vectoriel de dimension finie est isomorphe a un R” Remarque
(ou M, 1(R)). Autrement dit : tout vecteur d'un espace vectoriel £ de dimension finie peut Ce résultat est a la fois puissant
8tre vu comme une matrice ligne (ou colonne) : la matrice de ses coordonnées, une fois et décevant : tous les EV de di-
a8 mension finte n ont la méme téte
une base de E choisie. que R". Cest génial et peu origi-

nal a la fois...
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I THEOREME DU RANG ET CONSEQUENCES

DEFINITION 4 RANG D'UNE APPLICATION LINEAIRE

Le rang de f, noté rg(f), est la dimension de Im(f).

On a immédiatement :

PROPRIETES 8

Soient E et F deux espaces vectoriels de dimension finie et f € Z(E, F).
rg(f) < min ( dim(E), dim(F))
f est surjective si, et seulement si, rg(f) = dim(F)

Remarque

Par conséquent, st dim(E) <
dim(F), alors f ne peut pas étre

surjective |
o
DEMONSTRATION :
P1. e Par définition, rg(f) = dim (Im(f)), Or Im(f) est un sous-espace vectoriel de F, qui lui est de dimension finie. R .
Ainst, Im(f) est de dimension finie et donc le rang de f est fint. A retenir...
<
e Montrons que rg(f) < dim(E) T rg(f) < dim(F). x < minfa, b) e { XET\ !
* D'apres ce qui précede, on a déja : xsh
rg(f) < dim(F)
* Notons n = dim(E) et considérons (eq, e,, ..., e,) une base de E. On sait que :
Im(f) = Ve(‘[(f(ew), flez), ..., f(@”)) Rappels

e SU.Z est une famille libre de
E, alors Card(#) < dim(E).

o SU.Z est une famille géné-
ratrice de E, alors Card(F) >
Car'd(f(m), flez), ..., f(@”)) > dim (Im(f)) dim(E).

Autrement dit, la famille (/(e\), fles), ..., /(e,,)) est génératrice de Im(f). Et par conséquent :

On a ainsi :

dim(E) = rq(f)

Par conséquent :
rg(f) < ( dim(E); dim(F))

P2. On sait que Im(f) est un sous-espace vectoriel de F. Ainsti :
Im(f) = F <= dim (Im(f)) = dim(F)

Autrement dit :
Im(f) = F <= rg(f) = dim(F)

Mats, par définition, f est surjective si, et seulement si, Im(f) = F ..
Conclusion : f est surjective si, et seulement si, rg(f) = dim(F).

Et voict le fameux théoreme, un des plus importants d'algebre linéaire en dimension finie :

THEOREME 3 THEOREME DU RANG

St E est un espace vectoriel de dimension finie et f : E — F une application linéaire, alors :

X Attention !
dim(E) = dim ( ker(f)) + rqg(f) {E'est la dimension de l'espace de

départ qui entre en jeu !

*
DEMONSTRATION : Allez voir en maths appro ! N

& METtHoDE 1 & Pour déterminer noyau et image d'une application linéaire :

1. on commence par celui qui nous semble le plus simple (ou celui qui est demandé en premier),

2. on utilise le théoréeme du rang pour avoir la dimension de l'autre, et le déterminer par ensuite.

EXEMPLE 5

Reprenons l'application f de Exemples 3 - E2. Quel est son rang?
Puisque f est un endomorphisme de M5;(R), on a, d'aprés le théoréme du rang :

dim (,“\/l H(R))) = dim ( kor’(f)) + rg(f)
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1

1
v génératrice de ker(f),
v libre car constituée d'un unique vecteur non nul.

1
Par conséquent, la famille —2 est une base de ker(f) et donc dim ( |<er(/)) =1
1

Or, on avait ker(f) = Vect (1 — 21). Ainsi, la famille 2 est une famille de ker(f) qui est :

|Conclusion 1rg(f) = 2.

Conséquence importante du théoreme du rang :

PROPRIETE 9

Soient E et F deux espace vectoriels de dimension finie et f € Z(E, F).
St dim(E) = dim(F) = n, alors :

f injective «=——— f surjective

N/

f bijective
Autrement dit, st dim(£E) = dim(F) = n, alors :

ker(f) = {Og} ~—— rg(f

N/

f bijective

Remarque ————
| En pourrait également déterminer

Im(f) pour avoir rg(f)...

Important !

Cas particulier important : cette
propriété est vraie pour les endo-
morphismes en dimension finie.

FDEMONSTRATION : Supposons que dim(E) = dim(F).
e Montrons que l'injectivité de f équivaut a sa surjectivité.
Puisque E est de dimension finie, d'apres le théoreme du rang :
dim(E) = dim ( ker(f)) + rg(f)

Ensuite :

( est injective) ker(f) = {0¢}
dim ( ker(f)) =0

—

—

— I’g(f) — dim(E) J théoréme du rang
—

—

q(f) = dim(F) J dim(E) = dim(F)

Im(f) = F
& (f est surjective)

e Montrons que f est injective si, et seulement si, f est bijective.

On sait déja que la bijectivité de f implique son injectivité (par définition).

D'aprés ce qui précede, U'injectivité de f implique sa surjectivité. Par conséquent, si f est injective, elle est

également surjective et donc bijective. L'injectivité de f implique donc sa bijectivité.

Conclusion : f est injective si, et seulement si, f est bijective.

e De la méme fagon, on démontre que f est surjective si, et seulement si, f est bijective.

| EXEMPLE 6 I
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= Rappels...

e Le singleton {Og} est le seul
sous-espace vectoriel de £ de
dimension 0.

e Im(f) est un ssev de F

o le seul ssev de F de dimension
égale a dim(F) est £ lui-méme

X xX+y+z
Démontrons que l'application f: [y | — X—z est un automorphisme de Ms+(R).
z X+ y+z
11 1 X X )
e Posons A= |1 0 —1| desorte que pourtout |y | € M3q1(R),onaf|y| =Aly
2 1 1 z z z
Ainsi, d'apres le théoreme 1, f est un endomorphisme de M;5(R).




X
e Soit [y] €M;54(R).Ona:

z
X X 0
y | € ker(f) — flyl =10
z z 0
X+y+z=0
= X —z=0
2X+y+z=0
x+y+ z=0
= —y—22=0
Ly —1y—1
[ e -2, —y— z=0
x+y+ z=0
— —y—2z=0
I3 (51,
z=0
X+y+ z=0
—= —y—2z=0
z=0
x=0
= y=20
z=0
X 0
— y|l =10
z 0
On en déduit :
ker(f) = {O;j}

Donc f est injectif.

Conclusion : puisque f est un endomorphisme injectif de M5(R), f est un automorphisme de M5 +(R).
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