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INTRODUCTION...

Introduits au milieu du XVIIIE™ siécle par Euler, les graphes ont depuis trouvé de nombreuses applications dans des domaines variés comme la
physique, la génétique; et leur intérét s'est accru avec l'étude des réseaux de télécommunication, réseaux informatiques et des réseaux sociaux!

La théorie des graphes réunit sans mal les mathématiciens et informaticiens : autour du théoréme des quatre couleurs par exemple... C'est actuellement
un domaine trés étudié en mathématiques discretes.

Pour changer, une petite énigme... Peut-on, sur la figure ci-dessous :
e créer un chemin partant d'un sommet et en rejoignant un autre en passant une et une seule fois par chaque aréte de la figure?

e créer un chemin fermé partant d'un sommet et revenant au méme en passant une et une seule fois par chaque aréte de la figure?
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DEFINITIONS ET PREMIERS EXEMPLES

GRAPHE NON ORIENTE
DEFINITIONS 1 SUR LES GRAPHES NON ORIENTES...
En gros...
. i i , . Une paire est un couple non or-
Un graphe non orienté ¢ est la donnée d'un couple (S, A), ol : donné (ou une partie a 2 éléments
. , ouvant contenir deux fois le
e S est un ensemble fini, appelé ensemble des sommets de ¢, Eqéme élément); et un graphe est
e A est un ensemble de paires de sommets, appelé ensemble des arétes de ¥. 3” ensemble de points reliés par
es traits.
D Les deux sommets définissant une aréte sont ses extrémités.
Remarque

3| Une boucle est une aréte dont les deux extrémités sont identiques. Les boucles sont possibles car

. " . . N . . A est un ensemble de paires, et
4| Un graphe est simple lorsqu'il ne contient ni boucle ni aréte multiple entre deux mémes sommets. pas un ensemble de parties a 2
éléments de S'!

5| Un sommet est isolé lorsqu'aucune aréte ne le relie a un autre sommet.
Deux sommets sont adjacents lorsqu'ils sont reliés par une aréte.
7| Lordre d'un graphe est son nombre de sommets.

Soit s € S un sommet de ¢. Le degré de s, noté d(s), est le nombre d'arétes dont s est une extrémité.

5l[=l[=1(=][E][E] =
N

EXEMPLES 1

|

E1 | On considere le graphe ¢ dont voici la représentation graphique :

e lensemble des sommets de ¢ est {A,B,C,D, E,F}, 4 est dordre 6

l'ensemble des arétes de ¥ est :

{A-BA-C,B-C,B-DB—-EC-DC—-—ED—-EE—-E}

o F estisolé X Attention !
° d(A) =2, d(D) =3, d(E) =5 Quand on cherche le degré, une
boucle compte double !

le graphe n'est pas simple : il possede une boucle sur £

On pourrait modéliser le réseau social Facebook par un graphe non orienté sur lequel chaque compte est un | En prenant comme données 4 mil-
liards de comptes et, en moyenne,

sommet et la relation entre membres contacts se traduirait par une aréte. 338 amis par compte, ce graphe
3 10° x 338
aurait —————— arétes...
2
PROPRIETES 1 FormuULE D’'EULER

Soient n,p € N* et ¢ un graphe a n sommets de degrés respectifs dq, d>, ..., d,, et composé de p arétes.
Ona:

n
Z d; = 2,0 Ce résultat est parfois appelé

i—1 lemme des poignées de mains.
Il affirme en effet que, dans une
réunion de plusieurs personnes
dont certaines se serrent la main,
un nombre pair de personnes

Dans un graphe, il y a un nombre pair de sommets de degré impair.

devra serrer un nombre impair de

* , fois la main d'autres personnes.
DEMONSTRATION :

P1.

P2.

Immédiat : chaque aréte augmente de 2 la somme des degrés (soit elle augmente de 1 sur deux sommets distincts,
soit de 2 sur un méme sommet).

Notons D, la somme des degrés pairs et D; la somme des degrés impairs.
D'apres P1 (et avec les notations utilisées) :

Dp + D[ = Zp
clest a dire :

Di=2p—D,

Or, D, est une somme de nombres pairs, donc D, est pair. Par conséquent : 2p — D, est égalament pair, et donc
D; est pair.
Mais D; est une somme de nombres impairs; pour qu'elle soit paire, il est nécessaire qu'elle contienne un nombre

pair de termes.
]

Conclusion : il y a un nombre pair de sommets de degré impair.
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| EXEMPLE 2 I

Les équipes de football des CPGE des lycées Ampere, ND des Minimes, Le Parc, Ste-Marie et Les Chartreux
souhaitent organiser un tournoi dans lequel chaque équipe en affronterait trois autres. Que doit-on leur conseiller?

Pour terminer cette sous-partie sur les graphes non orientés :

DEFINITION 2 GRAPHE COMPLET

Un graphe complet est un graphe simple dont tous les sommets sont deux a deux adjacents.

| EXEMPLE 3 I

Représentons les graphes complets d'ordres 2,3,4,5 :

PROPRIETE 2

Soit 4 = (S, A) un graphe d'ordre n.

St ¢ est complet, alors il possede n(n =

*
DEMONSTRATION :
Voyons trois démonstrations de ce résultat...
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Autrement dit

| EXEMPLE 4 I

Lors d'une soirée, des étudiantes et étudiants de CPGE se saluent par un check.
Tous les individus se sont salués, et on a compté 780 checks. Quel est leffectif de la classe?

|2  GRAPHE ORIENTE

DEFINITIONS 3 SUR LES GRAPHES ORIENTES...

Un graphe orienté ¢ est la donnée d'un couple (S, A), ol :

e S est un ensemble fini, appelé ensemble des sommets de ¢,
e A est un ensemble de couples de sommets, appelé ensemble des arcs de 4.

Soit s € S un sommet de ¥. Le degré de s, noté d(s), est le nombre d'arcs dont s est une extrémité.

Le degré entrant de s, noté d(s), est le nombre d'arcs entrant vers s; et le degré sortant de s, noté d*(s), Remarque
) On a alors : d™(s) + d*(s) = d(s).
est le nombre d'arcs sortant de s.

H

EXEMPLES 5

On consideére le graphe ¢ dont voici la représentation graphique :

e lensemble des sommets de & est {A, B,C,D, E, F}, ¢ est dordre 6

e l'ensemble des arcs de & est :

{A-BA-CB—-CB->DB—-EC->DC—>FD—>EE—-CE—-DF->F}

o d'(A)=2d (A)=0,d (D)=3,d (E) =2 d"(E) =2

Le réseau social Instagram peut étre modélisé par un graphe orienté.

m"rn
Wil N

On peut modéliser le Web par un graphe orienté pour lequel :

e chaque sommet représente une page internet,

e chaque arc i — j traduit l'existence d'un lien sur la page i pointant vers la page j.
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PROPRIETE 3 ForMULE D'EULER

Soient n,p € N* et 4 un graphe a n sommets de degrés respectifs dy,d{, d;,d3,....d,, d} et composé de p

arcs. On a : . .
Y di=) di=p
=1 i=1

En particulier :

Remarque

Le lemme des poignées de main
reste valable en considérant le
degré total des sommets, mais ne
lest plus st on distingue d* et
d~ (voir Exemples 5 - E1).

*
DEMONSTRATION : Immédiat.

[+

.3 GRAPHE PONDERE

DEFINITION 4 GRAPHE PONDERE

Un graphe pondéré est un graphe (orienté ou non) sur lequel chaque arc ou aréte est pondéré par un réel
strictement positif (appelé poids).

| EXEMPLES 6 I

Une carte routiere peut se modéliser par un graphe pondéré dont les sommets sont les villes et les arétes ou
arcs sont les axes routiers indiquant les distances a parcourir sur chaque axe.

On considére le graphe ¢ dont voici la représentation graphique :
0,3

Ce graphe peut modéliser l'évolution d'un objet pouvant se trouver en trois endroits
différents A, B et C selon les régles suivantes :

e si lobjet est en A, il y reste avec une probabilité 0,3, ou il va en B avec
une probabilité 0,7;

e si lobjet est en B, il va en A ou en C de fagon équiprobable;

e si l'objet est en C, il va en A avec une probabilité 0,6 ou en B avec une 1

probabilité 0, 4.

Remarque

On introdutrait alors, pour tout

n €N, a, by, c, les probabilités
que lobjet se situe respectivement
en A, B, C; et on aurait, pour tout
neN:

apy1 =0,3a, +0,5b, + 0, 6¢,
by+1=0,7a, +0,4c,
Coa1 = 0,5b,
systeme qu'on écrirait sous forme
matricielle.. Nous verrons cela

avec l'étude des chalnes de Mar-
kov.

l.4  MATRICE D'ADJACENCE

DEFINITION 5 MATRICE D'ADJACENCE D'UN GRAPHE

Soit 4 = (S, A) un graphe dordre n (non pondéré), et notons S = {sy,s2, ..., s, }.
On appelle matrice d'adjacence de ¢ la matrice M = (m;;) € M, (R) telle que pour tous i,j € [1;n] :

e m;; est le nombre d'arétes reliant s; et s; si ¢ est non orienté;

e m,; est le nombre d'arcs de s; vers s; si ¢ est orienté.

Important !

Par convention, les sommets se-
ront rangés dans la matrice soit
par ordre de numérotation soit
par ordre alphabétique.

| EXEmPLES 7 I

est la matrice

La matrice d'adjacence du graphe

—~o—~0 =0
oO—~0 -0 =
~o-~0o-=0
oO—~0o -0 -
~o—~0 =0
o0 -0 =

OnO,
La matrice d'adjacence du graphe oe:eo est
&—®)
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Deux graphes peuvent avoir une
allure différente mais la méme
matrice d'adjacence. On dit alors
qu'ils sont isomorphes. Quand
deux graphes sont isomorphes,
leurs représentations graphiques
sont identiques a déplacements
des sommets prés... Il y a alors
correspondance unique entre un
graphe et sa matrice d'adjacence,
qui code alors toutes les infor-
mations du graphe. C'est donc
un outil qui doit nous permettre
d’analyser le graphe en détail !
Affaire a suivre...




est la matrice

La matrice d'adjacence du graphe

La matrice d'adjacence d'un graphe non orienté est
Un graphe est sans boucle si, et seulement si, sa matrice d'adjacence
Un graphe non orienté est complet si, et seulement si, sa matrice d'adjacence

Pour tout i € [1; n], la somme Z m;; est égale

j=1

Pour tout j € [1; n], la somme Zm,vv/ est égale

i=1

I DE L'ART DE RELIER DES SOMMETS...

.1 CHAINES ET CYCLES

DEFINITIONS 6 CHAINE, CYCLE, CYCLE EULERIEN

Soit 4 = (S, .A) un graphe non orienté.
Une chalne est une liste finie et non vide de sommets telle que chaque paire de sommets consécutifs de
la liste soit une aréte de .

La longueur d'une chalne est le nombre d'arétes dont elle est constituée.

Une chalne est fermée lorsque le sommet initial et le sommet final sont identiques.

Une chalne est simple lorsqu'aucune aréte n'y figure plus d'une fois.

Une chalne eulérienne est une chalne contenant toutes les arétes du graphe, chacune parcourue une
seule fois.

Un cycle est une chatne simple et fermée. Autrement dit, un cycle est une chatne dans laquelle chaque
aréte n'est parcourue qu'une seule fois, et dont le départ et l'arrivée sont les mémes.

Un cycle eulérien est une chalne eulérienne fermée.

| EXEMPLE 8 I

Dans le graphe ci-contre :

e A—B—C—D—E —F est une chatne simple (pas fermée) de longueur 5

e B—D—FE—F—E—C—B estune chalne fermée (pas simple) de longueur
6

° est une chatne eulérienne

e e graphe posséde-t-il un cycle eulérien?

Voyons l'information fournie par la matrice d'adjacence sur les chatnes ou chemins d'un graphe..

Vocabulaire
Pour les graphes orientés, on
parle de chemin plutét que de
chatne et de circuit plutét que de
cycle. Les notion sont analogues,
il suffit de faire attention au sens
de parcours...

X Attention | ———
Ei une chaine posséde n sommets,

sa lonqueur est n — 1.

Remarque ————
En revanche, un sommet peut y
fi

gurer plusteurs fos.

Soit 4 = (S, A) un graphe dordre n tel que S = {sy,s2, ..., 5,}. On note M sa matrice d'adjacence.
Pour tout p € N* et tous i, j € [1; n], le coefficient (i, j) de la matrice M? est égal

e soit au nombre de chalnes de longueur p reliant s; et s; si ¢ est non orienté,

e soit au nombre de chalnes de longueur p allant de s; vers s; si & est orienté.

*

DEMONSTRATION : Démontrons ce résultat dans le cas d'un graphe non orienté, la démonstration est analogue dans
le cas d'un graphe orienté.
Pour tout p € N* et tous ¢, j € [1; n], on note :
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e ¢;;(p) le nombre de chalnes de longueur p reliant les sommets i et j,
o m,j(p) le coefficient situé a la i-eme ligne et j-iéme colonne de MP.
Il s'agit donc d'établir :
Vp e N, Vi, j e [1in], cylp) = milp)
Démontrons ce résultat par récurrence !

e Initialisation. Pour p = 1:
Immédiat, par définition de la matrice d'adjacence d'un graphe et puisqu'une chalne de longueur 1 est une aréte.
e Hérédité. Soit p € N™. Supposons : Vi, j € [1;n], ci;(p) = mi;(p)" et montrons : Vi, j € [1;n], ci;(p+1) =
my(p+ 1)
Sotent i,j € [1;n]. On a:

¢;j(p + 1) = nombre de (p + 1)-chalnes de la forme s; — ... —s;

= Z nombre de (p + 1)-chalnes de la forme s; — ... — 5 —s;
k=1

Or, pour tout k € [1;n] :

* soit 5, et s; ne sont pas adjacents, et il n'existe pas de (p + 1)-chalne de la forme s; — ... — 5 —5;;
* soit s, et s; sont adjacents, et dans ce cas le nombre de (p + 1)-chalnes de la forme s; — ... — 5, — s, est
ainsi égal au nombre de p-chatnes de la forme s; — ... — s, (c'est a dire ¢;x(p)) multiplié par le nombre

d'arétes reliant s, et s; (cest a dire my ;(1)).

Dans les deux cas, le nombre de (p + 1)-chalnes de la forme s, — ... — s, —s; est égal a ¢;x(p) x my (7).
Reprenons alors le calcul précédent :

Cl/p-i-'] ZC‘k ><m(/ )
J par hypothése de récurrence

= Z m;, I< X mkj 1) R
) définition du produit matricel eémarque
Une chatne de lonqueur O se
= mi,j(P + 1) réduit a un sommet... Par consé-
,,,,, quent, le théoréme est encore va-
L'hérédité est ainsi vérifiée. lable pour p = 0 avec la conven-
) 0
Conclusion : Vp € N*, Vi,j € [1:n], c,j(p) = my;(p). . tion M” = hn.
ExempLES 9
. " = Rappels...
Reprenons le graphe et notons M sa matrice d'adjacence. (MN) =
Donc, pour tout p € N, {M)” =
(‘M)

D'ol, st M est symétrique :
(MP) = MP et donc MP est

@

211 2 2 0 2 7 7 4 4 2 également symétrique.
1T 4 3 2 2 1 7 8 9 9 10 2
o |13 4 2 2 1 3 7 9 8 9 10 2
On admet que M* = 52 23 2 1 et M 4 9 9 6 8 2
2 2 2 2 40 4 10 10 8 6 4
o1 1 1 01 2 2 2 2 4 0

o Le coefficient (1,2) de la matrice M? vaut 1 : il y a 1 chaine de longueur 2 reliant A et B. Il s'agit de la
chalne A—C - B.

o Le coefficient (2, 2) de la matrice M? vaut 4 : il y a 4 chalnes de longueur 2 reliant B & lui-méme. Il s'agit
des chalnes B—A—-B,B-C—-B, B-D—-BetB—-E-B.

e Interprétons le coefficient (4, 1) de la matrice M :

Considérons le graphe e.e et notons M sa matrice d'adjacence.

10 1 0 01 0 4

> [0 1 0 1 o |1 0 5 0

On admet que M* = 00 1 0 et M” = 00 0 1
0 0 0 1 0 010
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e Le coefficient (1,1) de la matrice M? vaut 0 : il n'y a aucun chemin de longueur 9 reliant A & lui-méme...

e Interprétons le coefficient (2,3) de la matrice M°

[ CONNEXITE D'UN GRAPHE

DEFINITIONS 7 GRAPHE CONNEXE

Soit ¢ un graphe.

St ¢ est non orienté, on dit que ¢ est connexe lorsque chaque sommet de ce graphe peut étre relié a
n'importe quel autre sommet par une chatne.

St ¥ est orienté,
e on dit que ¢ est faiblement connexe lorsque son graphe non orienté associé est connexe,
e on dit que ¢ est fortement connexe lorsque chaque sommet de ce graphe peut étre relié a n'importe
quel autre sommet par un chemin.

| ExempLE 10 I

Remarque
Dans le cas d'un graphe orienté,
si l'énoncé mentionne simplement
‘connexe’, il s'agit en fait de la
forte connexité.

Ce graphe est faiblement connexe, mais
pas fortement connexe (aucun chemin D
pour aller de C vers B).

Ce graphe est connexe...

chatne reliant B et C...

Et voyons maintenant l'information fournie par la matrice d'adjacence sur la connexité d'un graphe..

THEOREME 2

Soit 4 = (S, A) un graphe dordre n tel que S = {sy,s2, ..., s, }. Notons M sa matrice d'adjacence.

1. S ¥ est non orienté, alors : & est connexe si, et seulement si, les coefficients de la matrice [, + M+ ...+ M~
sont tous strictement positifs.

2. SU Y est orienté, alors : ¢ est fortement connexe si, et seulement si, les coefficients de la matrice /, + M +
..+ M"™" sont tous strictement positifs.

*
DEMONSTRATION :

1. Supposons que ¢ est un graphe non orienté.

CHAPITRE 24 - Page 8/

Ce graphe n'est pas connexe : aucune




2. Analogue au cas précédent.

]
[.3 EXISTENCE DE CHAINE EULERIENNE ET DE CYCLE EULERIEN

THEOREME 3 D'EULER

Vocabulaire

Soit ¢ un graphe simple non orienté et connexe. On dit parfois qu'un graphe est
eulérien lorsqu'il possede au
1. ¢ posséde un cycle eulérien si, et seulement si, tous ses sommets sont de degré pair. moins un cycle eulérien.

2. 9 possede une chalne eulérienne si, et seulement si, son nombre de sommets de degré impair est 0 ou 2.
Dans le cas oli 4 possede deux sommets de degré impair, alors ces deux sommets sont les extrémités des
chatnes eulériennes.

* S
DEMONSTRATION : A notre portée... pour celles et ceux qui veulent s'occuper un peu. .

[l DEUX ALGORITHMES CLASSIQUES

[ll.1° ALGORITHME DE PARCOURS EN PROFONDEUR (HP)

L'objectif de l'algorithme de parcours en profondeur d’'un graphe ¢ est de déterminer les composantes connexes d'un
graphe.

Commengons par Uexploration en profondeur d'un graphe a partir d'un sommet initialement choisi.
Soient alors 4 = (S, A) et s un sommet de ¢.

® on commence par visiter s,

e puis, pour chaque sommet adjacent a s qui n'a pas encore été visité, noté t : Remarque

% on visite t, Nous voici donc en face d'un
algorithme récursif, que nous

* puis, pour chaque sommet adjacent a ¢t qui n'a pas encore été visité, noté u : aurons le plaisir de programmer

X on visite v, en Python.
X puis ..
P X Attention !
On obtient ainsi une liste de tous les sommets qu'il est possible de relier a s. Cette liste n'a aucune raison
d'étre une chalne...

A ce stade, il est possible que des sommets n'aient pas été visités : c'est le cas si le graphe n'est pas connexe. On
peut relancer l'algorithme en initialisant sur un sommet non visité.

|EXEMPLE11|
OaOx0

Détaillons l'algorithme de parcours en profondeur sur le graphe e

G‘e { Remarque —————
J

Partons initialement du sommet A (L=[A]), puis on visite tous les sommets non visités adjacents a A : écris, au fur et a mesure, la liste
L des sommets déja visités.

e on visite donc B (L=[A,B]), puis on visite tous les sommets non visités adjacents a B :
* on visite donc C (L=[A,B,C]), puis on visite tous les sommets non visités adjacents a C : il n'y en a
pas (on ne poursuit donc pas en profondeur ici, on remonte...)
* on visite donc D (L=[A,B,C,D]), puis on visite tous les sommets non visités adjacents a D :
x on visite donc D (L=[A,B,C,D,F]), puis on visite tous les sommets non visités adjacents a F :
— on visite donc G (L=[A,B,C,D,F,G]), puis on visite tous les sommets non visités adjacents a
G : tous ont déja été visités!
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A la fin, on obtient donc la liste [A,B,C,D,F,G] qui est la liste de tous les sommets qui peuvent étre reliés a A
par une chaline.

[l ALGORITHME DE DiJKSTRA

L'objectif de l'algorithme de Dijkstra est de déterminer une chaine de poids minimal entre deux sommets quelconques
d'un graphe pondéré (orienté ou non).

Considérons ¢ = (S, A) un graphe (orienté ou non) et notons, pour tous u,v € S (u # v) p,, le poids de l'aréte u — v
(ou de l'arc u — v) si cette aréte existe; on considére que p,, = 400 si l'aréte u — v n'existe pas.

Fixons s € S un sommet et déterminons, pour tout t € S, la distance de s a t, notée d(s, t), cest a dire la longueur du
plus court chemin reliant s a t.

A chaque étape de l'algorithme, nous allons noter ¢(s, t) la longueur du plus court chemin alors exhibé reliant s a t; si
un tel chemin n'a pas encore été exhibé, on posera #(s, t) = +oc.

e Initialement, on considere alors :
O(s,s) =0 ; Vte S\ {s}, s, t)=+oc0

e A chaque étape, on sélectionne le sommet u qui contient la plus petite valeur de ¢(s, u) et pour chacun de ses
sommets adjacents v (n‘ayant pas déja été sélectionné), on effectue le test : "est-ce qu'il est plus court de passer
par u pour aller a v ou non?" Autrement dit, cela revient a tester la condition :

R
O(s, u) + puy < O(s,v)

* St non, on ne modifie rien et on poursuit.

* Stoui, en remplace l'ancienne valeur de (s, v) par ¢(s, u)+p,,, en précisant bien le sommet u de provenance.

ExempLE 12

Détaillons l'algorithme de Dijkstra pour déterminer les plus courts chemins (et leur longueur) reliant le sommet A
aux autres sommets du graphe ci-dessous :

A B C D E F G H | sommet

choisi
0 o0 o0 o0 00 o0 00 o0 A
| 4 84 ~ 00 o - i~ B
‘ ’ 84 225 255 0 00 0 c
| | | 18¢ 255 33¢ - 0 D
‘ ’ ( ‘ 258 30, 49, 0 E
T T T[T [ [ = |
T T T T [ [
T T T [= :

e Pour trouver le plus court chemin reliant A a G, il suffit alors de prendre la colonne G : on récupere l'information
42¢ indiquant que la longueur est de 42 et qu'il faut venir de E; puis dans la colonne de E, on voit qu'il faut
venir de B; et dans la colonne de B, on voit qu'il faut venir de A..

Le plus court chemin pour aller de A a G est le chemin A—B—E — G.

e Le plus court chemin pour aller de A a H est le chemin A—C—-D—F —H.
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V'S

Vocabulaire ———

On parle de composante connexe
contenant A du graphe (vocabu-
laire HP).

Remarque —————
Si le graphe n'est pas pondéré,
il permet alors de déterminer le
plus court chemin (et sa longueur)
entre deux sommets...

Remarque ————

A chaque étape de l'algorithme,
on choisit le sommet dont la dis-
tance a s est minimale... L'algo-
rithme de Dijkstra est donc un
algorithme glouton.

— Important !

A chaque étape, on regarde si

la somme de la distance menant
au sommet sélectionné + celle
vers ses sommets adjacents est
inférieur a la distance déja écrite
pour aller vers ce-dit sommet ad-
jacent. St oui, on indique cette
nouvelle valeur en précisant de
quel sommet elle est obtenue...
Puis on souligne la valeur mi-
nimale de chaque ligne pour
indiquer le nouveau sommet sé-
lectionné. On raye ensuite toutes
les colonnes du dessous pour in-
diquer que le plus court chemin
du sommet initial au sommet sé-
lectionné a été trouvée.




IV ELEMENTS D'ANALYSE DE RESEAUX SOCIAUX (HP)

La derniére partie est l'occasion de se focaliser davantage sur l'analyse des réseaux sociaux, et plus particulierement
sur la recherche d'influenceurs. Pour cela, considérons le graphe suivant :

PREMIER INDICATEUR : CENTRALITE DE DEGRE

La premiére approche, un peu naive, serait de dire que l'influenceur le plus important est le sommet de plus haut degré.
On l'appelle centralité de degré, définie par :
Cp(i) = d(i)

En clair : "plus j'ai d'amis, plus je suis influent’

, A - ) . , . , En gros...
Clest un premier indicateur, mais il est nettement insuffisant. En effet, sur lexemple précédent, le sommet s; a le degré ) oL ) )
T'as plein d'amis, mais tes amis

le plus élevé, mais les sommets qui lut sont adjacents ont tous un degré égal a 1 ou faible.. ont peu d'amis : tu n'es pas un
influenceur.

SECOND INDICATEUR : CENTRALITE DE PROXIMITIE (OU CENTRALITE HARMONIQUE)

Commencons pour cela par donner un indicateur de proximité entre deux sommets : la distance entre deux sommets
distincts s; et s; est la longueur de la plus courte chalne reliant s; a s;. St aucune chaine ne les relie, on dit que la
distance entre les deux est infinie.

1
Notons A;; la distance entre les sommets s; et s;. Avec pour convention — = 0, on définit maintenant le degré de
00

proximité du sommet s; par le nombre : La quantité — pourrait
¢ a 24
() = — j=1
P( ) v A[/ J#i
J=1 ' aussi convenir si le graphe était
it connexe... S'il ne lest pas, on
Plus les distances entre s; et les autres sommets sont petites, plus Cp(i) sera grand. :;Z?svemlt 0 pourtous fes son-
En clair : "plus je suis proche d'un grand nombre de personnes, plus je suis influent’
TROISIEME INDICATEUR : CENTRALITE D'INTERMEDIARITE
Avec ce troisieme indicateur, on souhaite mesurer l'importance d'un sommet dans le passage rapide d'une information.
Autrement dit, st un sommet est fréquent dans un gros nombre de chalnes les plus courtes entre deux autres sommets,
on veut que son degré d'intermédiarité soit fort.
Notons alors v, le nombre de plus courtes chalnes reliant s; et s;, ainsi que v; (i) le nombre de plus courtes chatnes
reliant s; et s, passant par i.
On définit maintenant le degré d'intermédiarité du sommet s; par le nombre :
n n v ([_)
. k.j
ci -y y
=1 k=1 J
Ti whikd
En clair : "plus vous passez par moi, plus je suis influent’

QUATRIEME INDICATEUR : CENTRALITE SPECTRALE Remarque

Partie a lire en deuxieme année,

A travers ce dernier indicateur, on souhaite mesurer l'influence d'un sommet en tenant compte de l'influence de ses 4 aprés avoir vu les notions de va-

. leurs propres et vecteurs propres
sommets adJacentS“' d'une matrice carrée.

En clair : "plus jai d'amis influents, plus je le suis’

Ce qui nous amene a définir la centralité spectrale de fagon implicite.. Supposons le graphe simple et notons M =
(mi)1<ij<n Sa matrice d'adjacence. On a alors :

. 1 sis; ets; sont adjacents
V(i) € [ n]’, Mij = { 0 sinon : J

Notons Cs(i) la centralité spectrale du sommet s;, nombre que l'on souhaite positif et que 'on définit par Uexistence d'un
réel strictement positif A tel que :
L] .
Cly=7 ) Gl

jtqsjadjas;
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,I n )
=3 > miyCs(j)

j=1

On voit bien le caractére implicite dans cette définition : on a besoin des indicateurs sur les voisins de s; pour calculer
l'indicateur sur s;.. Mais pour calculer l'indicateur d’'un voisin de s;, on aura besoin de l'indicateur de ses voisins, dont
s; fait partie! On tourne en rond... sauf si l'on remarque que l'on a alors :

n

> mi;Cs(j) = ACs(i)

Jj=1
Cs(1)
, Gs(2) A
et qu'en notant X = ) , on obtient :
: Amazing !!
Cs(n) N'est-ce pas plein de beauté ¢a?!
MX = AX On comprend mieux le nom de

cette centralité...

Autrement dit : le vecteur colonne des centralités spectrales des sommets du graphe est un vecteur propre de M pour —
une certaine valeur propre de M. — Un peu d'histoire
e Oskar Perron (1880-1975, al-
. ) . lemand) doit presque toute sa
Bon, il reste tout de méme deux petits soucis : postérité a ce fameux théoreme,
méme st sa contribution ne se
limite pas qu'a celui-ci...

e Ferdinand Georg Frobenius
(1849-1917, allemand) a établi
d’importants résultats en théo-
rie des groupes et en algebre
linéaire.

e Comment choisit-on A parmi les valeurs propres de M?

e Concretement, comment fait-on pour calculer ce vecteur?

Pour répondre a ces deux questions, on combine deux résultats importants :

o~

1. le théoréme de Perron-Frobenius,

2. la méthode de la puissance itérée...

L'algorithme PageRank de
Google, qui trie les pages du Web
selon leur pertinence/importance,
est basé sur cette centralité spec-
trale...

Voir ESSEC 2008 E 2.

CHAPITRE 24 - Page 12/12



	
	Définitions et premiers exemples
	Graphe non orienté
	Graphe orienté
	Graphe pondéré
	Matrice d'adjacence

	De l'art de relier des sommets...
	Chaînes et cycles
	Connexité d'un graphe
	Existence de chaîne eulérienne et de cycle eulérien

	Deux algorithmes classiques
	Algorithme de parcours en profondeur (HP)
	Algorithme de Dijkstra

	Éléments d'analyse de réseaux sociaux (HP)


