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Graphes

Introduction...

Introduits au milieu du XVIIIème siècle par Euler, les graphes ont depuis trouvé de nombreuses applications dans des domaines variés comme laphysique, la génétique ; et leur intérêt s’est accru avec l’étude des réseaux de télécommunication, réseaux informatiques et des réseaux sociaux !
La théorie des graphes réunit sans mal les mathématiciens et informaticiens : autour du théorème des quatre couleurs par exemple... C’est actuellementun domaine très étudié en mathématiques discrètes.
Pour changer, une petite énigme... Peut-on, sur la figure ci-dessous :

• créer un chemin partant d’un sommet et en rejoignant un autre en passant une et une seule fois par chaque arête de la figure ?
• créer un chemin fermé partant d’un sommet et revenant au même en passant une et une seule fois par chaque arête de la figure ?
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I Définitions et premiers exemples
I.1 Graphe non orienté

Définitions 1 Sur les graphes non orientés...

D1 Un graphe non orienté G est la donnée d’un couple (S, A), où :
• S est un ensemble fini, appelé ensemble des sommets de G ,
• A est un ensemble de paires de sommets, appelé ensemble des arêtes de G .

D2 Les deux sommets définissant une arête sont ses extrémités.
D3 Une boucle est une arête dont les deux extrémités sont identiques.
D4 Un graphe est simple lorsqu’il ne contient ni boucle ni arête multiple entre deux mêmes sommets.
D5 Un sommet est isolé lorsqu’aucune arête ne le relie à un autre sommet.
D6 Deux sommets sont adjacents lorsqu’ils sont reliés par une arête.
D7 L’ordre d’un graphe est son nombre de sommets.
D8 Soit s ∈ S un sommet de G . Le degré de s, noté d(s), est le nombre d’arêtes dont s est une extrémité.

Une paire est un couple non or-donné (ou une partie à 2 élémentspouvant contenir deux fois lemême élément) ; et un graphe estun ensemble de points reliés pardes traits.

En gros...

Les boucles sont possibles car
A est un ensemble de paires, etpas un ensemble de parties à 2éléments de S !

Remarque

Exemples 1

E1 On considère le graphe G dont voici la représentation graphique :
A B C

D E F

• l’ensemble des sommets de G est {A, B, C, D, E, F}, G est d’ordre 6
• l’ensemble des arêtes de G est :

{A − B, A − C, B − C, B − D, B − E, C − D, C − E, D − E, E − E}

• F est isolé
• d(A) = 2, d(D) = 3, d(E ) = 5 Quand on cherche le degré, uneboucle compte double !

✘ Attention !

• le graphe n’est pas simple : il possède une boucle sur E

E2 On pourrait modéliser le réseau social Facebook par un graphe non orienté sur lequel chaque compte est unsommet et la relation entre membres contacts se traduirait par une arête. En prenant comme données 4 mil-liards de comptes et, en moyenne,338 amis par compte, ce grapheaurait 3 × 109 × 3382 arêtes...

☞ Pour info...

Ce résultat est parfois appelé
lemme des poignées de mains.Il affirme en effet que, dans uneréunion de plusieurs personnesdont certaines se serrent la main,un nombre pair de personnesdevra serrer un nombre impair defois la main d’autres personnes.

☞ Pour info...

Propriétés 1 Formule d’Euler

P1 Soient n, p ∈ N∗ et G un graphe à n sommets de degrés respectifs d1, d2, ..., dn et composé de p arêtes.On a :
n∑

i=1 di = 2p

P2 Dans un graphe, il y a un nombre pair de sommets de degré impair.
⋆ Démonstration :

P1. Immédiat : chaque arête augmente de 2 la somme des degrés (soit elle augmente de 1 sur deux sommets distincts,soit de 2 sur un même sommet).
P2. Notons Dp la somme des degrés pairs et Di la somme des degrés impairs.D’après P1 (et avec les notations utilisées) :

Dp + Di = 2pc’est à dire :
Di = 2p − DpOr, Dp est une somme de nombres pairs, donc Dp est pair. Par conséquent : 2p − Dp est égalament pair, et donc

Di est pair.Mais Di est une somme de nombres impairs ; pour qu’elle soit paire, il est nécessaire qu’elle contienne un nombrepair de termes.
Conclusion : il y a un nombre pair de sommets de degré impair.

⋆

Chapitre 24 - Page 2/12



Exemple 2Les équipes de football des CPGE des lycées Ampère, ND des Minimes, Le Parc, Ste-Marie et Les Chartreuxsouhaitent organiser un tournoi dans lequel chaque équipe en affronterait trois autres. Que doit-on leur conseiller ?Cherchons à modéliser cette situation par un graphe sur lequel :
• chaque sommet correspond à une équipe,
• chaque arête traduit l’affrontement de deux équipes dans un match.Dans ce cas, le graphe serait composé de 5 sommets, tous de degré 3.Il y aurait donc un nombre impair de sommets de degré pair : c’est impossible !

Conclusion : il est impossible d’organiser un tel tournoi... il suffit de virer une équipe (ou de faire un tournoicomplet dans lequel chaque équipe rencontre les 4 autres : il y aurait alors 10 matchs).
Pour terminer cette sous-partie sur les graphes non orientés :

Définition 2 Graphe complet

Un graphe complet est un graphe simple dont tous les sommets sont deux à deux adjacents.
Exemple 3Représentons les graphes complets d’ordres 2,3,4,5 :

1 2 1

2

3 1

2 3

4 1 5
2 4

3

Propriété 2

Soit G = (S, A) un graphe d’ordre n.Si G est complet, alors il possède n(n − 1)2 arêtes.
⋆ Démonstration :Voyons trois démonstrations de ce résultat... Résultat à connaître, mais dontla démonstration a été demandéedans le sujet Ecricome 2024

Appli - Ex3...
Important !

1. Directement avec la définition.Puisque G est complet, en particulier :
• G est simple, donc sans boucle ; et ainsi, toute arête est associée à un ensemble de sommets de cardinal 2(deux sommets distincts) ;
• les sommets de G sont deux à deux adjacents, et donc tout ensemble de sommets de cardinal 2 est associé àune arête.Par conséquent, il y a autant d’arêtes dans G que de sous-ensembles de S à deux éléments.Or, Card(S) = n, donc il y a (

n2
) sous-ensembles de S à deux éléments.

Conclusion : G possède n(n − 1)2 arêtes.
2. Avec la formule d’Euler.Puisque G est complet, chaque sommet de G est adjacent à n−1 sommets (tous les autres, sauf lui). Par conséquent,le degré de chaque sommet est n − 1.On a alors, d’après la formule d’Euler (en notant p le nombre d’arêtes de G ) :

n∑
i=1 (n − 1) = 2p

Autrement dit :
n(n − 1) = 2p

Conclusion : G possède n(n − 1)2 arêtes.
3. Par récurrence...

• Initialisation. Pour n = 1 :Un graphe à un seul sommet ne possède pas d’arête... L’initialisation est ainsi vérifiée.

Chapitre 24 - Page 3/12



• Hérédité. Soit n ∈ N∗ . Supposons que "tout graphe d’ordre n possède n(n − 1)2 arêtes" et montrons que "tout
graphe d’ordre n + 1 possède n(n + 1)2 arêtes".Soit G = (S, A) un graphe complet d’ordre n + 1. Considérons s0 ∈ S , notons S ′ = S \ {s0} ainsi que
G ′ = (S ′, A′) le sous-graphe de G induit par S ′ . G ′ est le graphe dont les som-mets sont ceux de G sauf s0 , etdont les arêtes sont toutes cellesde G , sauf celles dont s0 est uneextrémité.

Autrement dit

Par conséquent, G ′ est un graphe complet d’ordre n et les arêtes de G sont celles de G ′ auxquelles il fautajouter celles reliant s0 aux autres sommets de G . Autrement dit :
A = A′ ∪

{
s0 − s / s ∈ S et s ̸= s0}Or, les deux ensembles de cette union étant disjoints (A′ ne contient, par définition, aucune arrête dont s0 estune extrémité), on a :Card(A) = Card(A′) + Card({

s0 − s / s ∈ S et s ̸= s0})
par hypothèse de récurrence= n(n − 1)2 + Card({

s0 − s / s ∈ S et s ̸= s0})
n sommets de G différents de s0 , donc n arêtes de la forme s − s0 car G est complet= n(n − 1)2 + n

= n(n + 1)2L’hérédité est ainsi vérifiée.
Conclusion : tout graphe complet d’ordre n possède n(n − 1)2 arrêtes.

⋆

Exemple 4Lors d’une soirée, des étudiantes et étudiants de CPGE se saluent par un check.Tous les individus se sont salués, et on a compté 780 checks. Quel est l’effectif de la classe ?Modélisons cette situation par un graphe sur lequel :
• chaque sommet représente un individu,
• chaque arête traduit le check entre deux personnes.Puisque tous les individus se sont salués et que personne ne s’auto-salue, le graphe est complet. En notant n l’ordredu graphe, on a donc :

n(n − 1)2 = 780
Conclusion : n = 40, donc l’effectif de la classe est égal à 40.

I.2 Graphe orienté
Définitions 3 Sur les graphes orientés...

D1 Un graphe orienté G est la donnée d’un couple (S, A), où :
• S est un ensemble fini, appelé ensemble des sommets de G ,
• A est un ensemble de couples de sommets, appelé ensemble des arcs de G .

D2 Soit s ∈ S un sommet de G . Le degré de s, noté d(s), est le nombre d’arcs dont s est une extrémité.Le degré entrant de s, noté d−(s), est le nombre d’arcs entrant vers s ; et le degré sortant de s, noté d+(s),est le nombre d’arcs sortant de s. On a alors : d−(s) + d+(s) = d(s).Remarque

Exemples 5

E1 On considère le graphe G dont voici la représentation graphique :
A B C

D E F

• l’ensemble des sommets de G est {A, B, C, D, E, F}, G est d’ordre 6
• l’ensemble des arcs de G est :

{A → B, A → C, B → C, B → D, B → E, C → D, C → F, D → E, E → C, E → D, F → F}

• d+(A) = 2, d−(A) = 0, d−(D) = 3, d−(E ) = 2, d+(E ) = 2
E2 Le réseau social Instagram peut être modélisé par un graphe orienté.
E3 On peut modéliser le Web par un graphe orienté pour lequel :

• chaque sommet représente une page internet,
• chaque arc i → j traduit l’existence d’un lien sur la page i pointant vers la page j .
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Propriété 3 Formule d’Euler

Soient n, p ∈ N∗ et G un graphe à n sommets de degrés respectifs d−1 , d+1 , d−2 , d+2 , ..., d−
n , d+

n et composé de parcs. On a :
n∑

i=1 d−
i = n∑

i=1 d+
i = p

En particulier :
n∑

i=1 di = 2p

⋆ Démonstration : Immédiat. ⋆

Le lemme des poignées de mainreste valable en considérant ledegré total des sommets, mais nel’est plus si on distingue d+ et
d− (voir Exemples 5 - E1).

Remarque

I.3 Graphe pondéré
Définition 4 Graphe pondéré

Un graphe pondéré est un graphe (orienté ou non) sur lequel chaque arc ou arête est pondéré par un réelstrictement positif (appelé poids).
Exemples 6

E1 Une carte routière peut se modéliser par un graphe pondéré dont les sommets sont les villes et les arêtes ouarcs sont les axes routiers indiquant les distances à parcourir sur chaque axe.
E2 On considère le graphe G dont voici la représentation graphique :
A B

C

0, 7
0, 5

0, 50, 40, 6

0, 3 Ce graphe peut modéliser l’évolution d’un objet pouvant se trouver en trois endroitsdifférents A, B et C selon les règles suivantes :
• si l’objet est en A, il y reste avec une probabilité 0, 3, ou il va en B avecune probabilité 0, 7 ;
• si l’objet est en B, il va en A ou en C de façon équiprobable ;
• si l’objet est en C , il va en A avec une probabilité 0, 6 ou en B avec uneprobabilité 0, 4.

On introduirait alors, pour tout
n ∈ N, an, bn, cn les probabilitésque l’objet se situe respectivementen A, B, C ; et on aurait, pour tout
n ∈ N : an+1 = 0, 3an + 0, 5bn + 0, 6cn

bn+1 = 0, 7an + 0, 4cn
cn+1 = 0, 5bnsystème qu’on écrirait sous formematricielle... Nous verrons celaavec l’étude des chaînes de Mar-kov.

Remarque

I.4 Matrice d’adjacence
Définition 5 Matrice d’adjacence d’un graphe

Soit G = (S, A) un graphe d’ordre n (non pondéré), et notons S = {s1, s2, ..., sn}.On appelle matrice d’adjacence de G la matrice M = (mi,j ) ∈ Mn(R) telle que pour tous i, j ∈ J1; nK :
• mi,j est le nombre d’arêtes reliant si et sj si G est non orienté ;
• mi,j est le nombre d’arcs de si vers sj si G est orienté. Par convention, les sommets se-ront rangés dans la matrice soitpar ordre de numérotation soitpar ordre alphabétique.

Important !

Exemples 7

E1 La matrice d’adjacence du graphe A C E
B D F

est la matrice


0 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 0

. Deux graphes peuvent avoir uneallure différente mais la mêmematrice d’adjacence. On dit alorsqu’ils sont isomorphes. Quanddeux graphes sont isomorphes,leurs représentations graphiquessont identiques à déplacementsdes sommets près... Il y a alorscorrespondance unique entre ungraphe et sa matrice d’adjacence,qui code alors toutes les infor-mations du graphe. C’est donc
un outil qui doit nous permettre
d’analyser le graphe en détail !Affaire à suivre...

☞ Pour info...

E2 La matrice d’adjacence du graphe A
C
E

B
D

F
est également la matrice


0 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 0

.
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E3 La matrice d’adjacence du graphe A B C
D E F

est la matrice


0 1 1 0 0 00 0 1 1 1 00 0 0 0 0 10 0 0 0 1 00 0 1 1 0 00 0 0 0 0 1

.

E4 La matrice d’adjacence d’un graphe non orienté est symétrique.
E5 Un graphe est sans boucle si, et seulement si, sa matrice d’adjacence a tous ses coefficients diagonaux nuls.
E6 Un graphe non orienté est complet si, et seulement si, sa matrice d’adjacence est la matrice constituée de 1partout sauf des 0 sur toute sa diagonale.
E7 Pour tout i ∈ J1; nK, la somme n∑

j=1 mi,j est égale au degré du sommet i si le graphe est non orienté, et à son
degré sortant si le graphe est orienté.
E8 Pour tout j ∈ J1; nK, la somme n∑

i=1 mi,j est égale au degré du sommet j si le graphe est non orienté, et à son
degré entrant si le graphe est orienté.

II De l’art de relier des sommets...
II.1 Chaînes et cycles

Définitions 6 Chaîne, cycle, cycle eulérien

Soit G = (S, A) un graphe non orienté.
D1 Une chaîne est une liste finie et non vide de sommets telle que chaque paire de sommets consécutifs dela liste soit une arête de G .
D2 La longueur d’une chaîne est le nombre d’arêtes dont elle est constituée.
D3 Une chaîne est fermée lorsque le sommet initial et le sommet final sont identiques.
D4 Une chaîne est simple lorsqu’aucune arête n’y figure plus d’une fois.
D5 Une chaîne eulérienne est une chaîne contenant toutes les arêtes du graphe, chacune parcourue une

seule fois.
D6 Un cycle est une chaîne simple et fermée. Autrement dit, un cycle est une chaîne dans laquelle chaquearête n’est parcourue qu’une seule fois, et dont le départ et l’arrivée sont les mêmes.
D7 Un cycle eulérien est une chaîne eulérienne fermée.

Pour les graphes orientés, onparle de chemin plutôt que dechaîne et de circuit plutôt que decycle. Les notion sont analogues,il suffit de faire attention au sensde parcours...

Vocabulaire

Si une chaîne possède n sommets,sa longueur est n − 1.
✘ Attention !

En revanche, un sommet peut yfigurer plusieurs fois.
Remarque

Exemple 8Dans le graphe ci-contre :
• A − B − C − D − E − F est une chaîne simple (pas fermée) de longueur 5
• B −D −E −F −E −C −B est une chaîne fermée (pas simple) de longueur6
• F − E − C − D − E − B − C − A − B − D est une chaîne eulérienne
• Le graphe possède-t-il un cycle eulérien ?Non, car il est impossible d’aller et revenir en F sans passer par la mêmearête...

A B C

D E F
Voyons l’information fournie par la matrice d’adjacence sur les chaînes ou chemins d’un graphe...

Théorème 1

Soit G = (S, A) un graphe d’ordre n tel que S = {s1, s2, ..., sn}. On note M sa matrice d’adjacence.Pour tout p ∈ N∗ et tous i, j ∈ J1; nK, le coefficient (i, j) de la matrice Mp est égal
• soit au nombre de chaînes de longueur p reliant si et sj si G est non orienté,
• soit au nombre de chaînes de longueur p allant de si vers sj si G est orienté.

⋆ Démonstration : Démontrons ce résultat dans le cas d’un graphe non orienté, la démonstration est analogue dansle cas d’un graphe orienté.Pour tout p ∈ N∗ et tous i, j ∈ J1; nK, on note :
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• ci,j (p) le nombre de chaînes de longueur p reliant les sommets i et j ,
• mi,j (p) le coefficient situé à la i-ème ligne et j-ième colonne de Mp .Il s’agit donc d’établir :

∀p ∈ N∗, ∀i, j ∈ J1; nK, ci,j (p) = mi,j (p)Démontrons ce résultat par récurrence !
• Initialisation. Pour p = 1 :Immédiat, par définition de la matrice d’adjacence d’un graphe et puisqu’une chaîne de longueur 1 est une arête.
• Hérédité. Soit p ∈ N∗ . Supposons : "∀i, j ∈ J1; nK, ci,j (p) = mi,j (p)" et montrons : "∀i, j ∈ J1; nK, ci,j (p + 1) =

mi,j (p + 1)".Soient i, j ∈ J1; nK. On a :
ci,j (p + 1) = nombre de (p + 1)-chaînes de la forme si − ... − sj

= n∑
k=1 nombre de (p + 1)-chaînes de la forme si − ... − sk − sj

Or, pour tout k ∈ J1; nK :

✱ soit sk et sj ne sont pas adjacents, et il n’existe pas de (p + 1)-chaîne de la forme si − ... − sk − sj ;

✱ soit sk et sj sont adjacents, et dans ce cas le nombre de (p + 1)-chaînes de la forme si − ... − sk − sj estainsi égal au nombre de p-chaînes de la forme si − ... − sk (c’est à dire ci,k (p)) multiplié par le nombred’arêtes reliant sk et sj (c’est à dire mk,j (1)).Dans les deux cas, le nombre de (p + 1)-chaînes de la forme si − ... − sk − sj est égal à ci,k (p) × mk,j (1).Reprenons alors le calcul précédent :
ci,j (p + 1) = n∑

k=1 ci,k (p) × mi,j (1) par hypothèse de récurrence
= n∑

k=1 mi,k (p) × mk,j (1) définition du produit matricel= mi,j (p + 1)L’hérédité est ainsi vérifiée.
Conclusion : ∀p ∈ N∗, ∀i, j ∈ J1; nK, ci,j (p) = mi,j (p). ⋆

Une chaîne de longueur 0 seréduit à un sommet... Par consé-quent, le théorème est encore va-lable pour p = 0 avec la conven-tion M0 = In .

Remarque

Exemples 9

E1 Reprenons le graphe
A B C

D E F
et notons M sa matrice d’adjacence. t(MN) = tNtMDonc, pour tout p ∈ N, t(M)p =(tM)pD’où, si M est symétrique :

t(Mp) = Mp et donc Mp estégalement symétrique.

☞ Rappels...

On admet que M2 =


2 1 1 2 2 01 4 3 2 2 11 3 4 2 2 12 2 2 3 2 12 2 2 2 4 00 1 1 1 0 1

 et M3 =


2 7 7 4 4 27 8 9 9 10 27 9 8 9 10 24 9 9 6 8 24 10 10 8 6 42 2 2 2 4 0


• Le coefficient (1, 2) de la matrice M2 vaut 1 : il y a 1 chaîne de longueur 2 reliant A et B. Il s’agit de lachaîne A − C − B.
• Le coefficient (2, 2) de la matrice M2 vaut 4 : il y a 4 chaînes de longueur 2 reliant B à lui-même. Il s’agitdes chaînes B − A − B, B − C − B, B − D − B et B − E − B.
• Interprétons le coefficient (4, 1) de la matrice M3 : il y a 4 chaînes de longueur 3 reliant A et D. Il s’agit deschaînes A − B − C − D, A − B − E − D, A − C − B − D et A − C − E − D.

E2 Considérons le graphe A B

CD

et notons M sa matrice d’adjacence.

On admet que M2 =


1 0 1 00 1 0 10 0 1 00 0 0 1
 et M9 =


0 1 0 41 0 5 00 0 0 10 0 1 0


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• Le coefficient (1,1) de la matrice M9 vaut 0 : il n’y a aucun chemin de longueur 9 reliant A à lui-même...
• Interprétons le coefficient (2,3) de la matrice M9 : il y a 5 chemins de longueur 9 pour aller de B vers C . Ils’agit des chemins :

B → A → B → A → B → A → B → A → B → C
B → A → B → A → B → A → B → C → D → C
B → A → B → A → B → C → D → C → D → C
B → A → B → C → D → C → D → C → D → Cet B → C → D → C → D → C → D → C → D → C .

II.2 Connexité d’un graphe
Définitions 7 Graphe connexe

Soit G un graphe.
D1 Si G est non orienté, on dit que G est connexe lorsque chaque sommet de ce graphe peut être relié àn’importe quel autre sommet par une chaîne.
D2 Si G est orienté,

• on dit que G est faiblement connexe lorsque son graphe non orienté associé est connexe,
• on dit que G est fortement connexe lorsque chaque sommet de ce graphe peut être relié à n’importequel autre sommet par un chemin. Dans le cas d’un graphe orienté,si l’énoncé mentionne simplement"connexe", il s’agit en fait de laforte connexité.

Remarque

Exemple 10

A B C

D E FCe graphe est connexe...

A B

CD
Ce graphe est faiblement connexe, maispas fortement connexe (aucun cheminpour aller de C vers B).

AB

C

D E F

G

H

Ce graphe n’est pas connexe : aucunechaîne reliant B et C ...Et voyons maintenant l’information fournie par la matrice d’adjacence sur la connexité d’un graphe...
Théorème 2

Soit G = (S, A) un graphe d’ordre n tel que S = {s1, s2, ..., sn}. Notons M sa matrice d’adjacence.
1. Si G est non orienté, alors : G est connexe si, et seulement si, les coefficients de la matrice In +M + ...+Mn−1sont tous strictement positifs.
2. Si G est orienté, alors : G est fortement connexe si, et seulement si, les coefficients de la matrice In + M +

... + Mn−1 sont tous strictement positifs.
⋆ Démonstration :

1. Supposons que G est un graphe non orienté. Raisonnons par double implication.
⇐ Supposons que les coefficients de la matrice In + M + ... + Mn−1 sont tous strictement positifs, et montronsque G est connexe.Soient i, j ∈ J1; nK. Montrons que les sommets si et sj sont reliés par une chaîne.Par hypothèse, le coefficient (i, j) de la matrice In + M + ... + Mn−1 est strictement positif. Par conséquent :

∃p ∈ J0; n − 1K /
(
Mp)

i,j > 0 Si une somme de termes est stric-tement positive, alors il existe aumoins un terme strictement positif(quelle est la contraposée de cetteassertion ?).

☞ Rappel...

Et ainsi, d’après le théorème 1, il existe p ∈ J0; n − 1K et au moins une chaîne de longueur p entre si et sj .
Conclusion : il existe une chaîne entre si et sj , d’où la connexité de G .

⇒ Supposons que G est connexe et montrons que les coefficients de la matrice In + M + ... + Mn−1 sont tousstrictement positifs.Soient i, j ∈ J1; nK. Montrons que le coefficient (i, j) de In + M + ... + Mn−1 est strictement positif.
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✱ On sait déjà que les coefficients des matrices In, M, M2, ..., Mn−1 sont positifs ou nuls. Car les coefficients de M sontpositifs...
Pourquoi ?Par conséquent,pour montrer que le coefficient (i, j) de la matrice In + M + ... + Mn−1 est strictement positif, il suffit demontrer qu’il existe p ∈ J0; n − 1K tel que le coefficient (i, j) de Mp est strictement positif.

✱ Or, G est connexe. Ainsi, il existe une chaîne reliant si et sj . Autrement dit, il existe p ∈ N et une chaînede longueur p reliant si et sj .D’après le théorème 1, on en déduit :
∃p ∈ N /

(
Mp)

i,j > 0
Il ne reste plus qu’à justifier que l’on peut en fait trouver p dans J0; n − 1K... C’est bien le cas, puisquepour aller de si à sj par une chaîne, il est inutile de passer deux fois par le même sommet ! La chaîne laplus courte (elle existe bien...) pour aller de si à sj est donc de longueur inférieure ou égale à n − 1.

Conclusion : le coefficient (i, j) de In + M + ... + Mn−1 est strictement positif.
2. Analogue au cas précédent.

⋆

II.3 Existence de chaîne eulérienne et de cycle eulérien
On dit parfois qu’un graphe esteulérien lorsqu’il possède aumoins un cycle eulérien.

Vocabulaire
Théorème 3 d’Euler

Soit G un graphe simple non orienté et connexe.
1. G possède un cycle eulérien si, et seulement si, tous ses sommets sont de degré pair.
2. G possède une chaîne eulérienne si, et seulement si, son nombre de sommets de degré impair est 0 ou 2.Dans le cas où G possède deux sommets de degré impair, alors ces deux sommets sont les extrémités deschaînes eulériennes.

⋆ Démonstration : À notre portée... pour celles et ceux qui veulent s’occuper un peu. ⋆

III Deux algorithmes classiques
III.1 Algorithme de parcours en profondeur (HP)L’objectif de l’algorithme de parcours en profondeur d’un graphe G est de déterminer les composantes connexes d’ungraphe.
Commençons par l’exploration en profondeur d’un graphe à partir d’un sommet initialement choisi.Soient alors G = (S, A) et s un sommet de G .

• on commence par visiter s,
• puis, pour chaque sommet adjacent à s qui n’a pas encore été visité, noté t :

✱ on visite t ,

✱ puis, pour chaque sommet adjacent à t qui n’a pas encore été visité, noté u :
✕ on visite u,
✕ puis ...

Nous voici donc en face d’unalgorithme récursif, que nousaurons le plaisir de programmeren Python.
Remarque

On obtient ainsi une liste de tous les sommets qu’il est possible de relier à s. Cette liste n’a aucune raisond’être une chaîne...
✘ Attention !

A ce stade, il est possible que des sommets n’aient pas été visités : c’est le cas si le graphe n’est pas connexe. Onpeut relancer l’algorithme en initialisant sur un sommet non visité.
Exemple 11

Détaillons l’algorithme de parcours en profondeur sur le graphe
A B C

D E
F G H

.

Partons initialement du sommet A (L=[A]), puis on visite tous les sommets non visités adjacents à A : J’écris, au fur et à mesure, la liste
L des sommets déjà visités.

Remarque

• on visite donc B (L=[A,B]), puis on visite tous les sommets non visités adjacents à B :

✱ on visite donc C (L=[A,B,C]), puis on visite tous les sommets non visités adjacents à C : il n’y en apas (on ne poursuit donc pas en profondeur ici, on remonte...)

✱ on visite donc D (L=[A,B,C,D]), puis on visite tous les sommets non visités adjacents à D :
✕ on visite donc D (L=[A,B,C,D,F]), puis on visite tous les sommets non visités adjacents à F :

− on visite donc G (L=[A,B,C,D,F,G]), puis on visite tous les sommets non visités adjacents à
G : tous ont déjà été visités !
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A la fin, on obtient donc la liste [A,B,C,D,F,G] qui est la liste de tous les sommets qui peuvent être reliés à Apar une chaîne. On parle de composante connexe
contenant A du graphe (vocabu-laire HP).

Vocabulaire

III.2 Algorithme de DijkstraL’objectif de l’algorithme de Dijkstra est de déterminer une chaîne de poids minimal entre deux sommets quelconquesd’un graphe pondéré (orienté ou non). Si le graphe n’est pas pondéré,il permet alors de déterminer leplus court chemin (et sa longueur)entre deux sommets...
Remarque

Considérons G = (S, A) un graphe (orienté ou non) et notons, pour tous u, v ∈ S (u ̸= v ) pu,v le poids de l’arête u − v(ou de l’arc u → v ) si cette arête existe ; on considère que pu,v = +∞ si l’arête u − v n’existe pas.
Fixons s ∈ S un sommet et déterminons, pour tout t ∈ S , la distance de s à t , notée d(s, t), c’est à dire la longueur duplus court chemin reliant s à t .A chaque étape de l’algorithme, nous allons noter ℓ(s, t) la longueur du plus court chemin alors exhibé reliant s à t ; siun tel chemin n’a pas encore été exhibé, on posera ℓ(s, t) = +∞.

• Initialement, on considère alors :
ℓ(s, s) = 0 ; ∀t ∈ S \ {s}, ℓ(s, t) = +∞

• A chaque étape, on sélectionne le sommet u qui contient la plus petite valeur de ℓ(s, u) et pour chacun de sessommets adjacents v (n’ayant pas déjà été sélectionné), on effectue le test : "est-ce qu’il est plus court de passerpar u pour aller à v ou non ?" Autrement dit, cela revient à tester la condition :
ℓ(s, u) + pu,v

?
⩽ ℓ(s, v )

✱ Si non, on ne modifie rien et on poursuit.

✱ Si oui, en remplace l’ancienne valeur de ℓ(s, v ) par ℓ(s, u)+pu,v en précisant bien le sommet u de provenance. A chaque étape de l’algorithme,on choisit le sommet dont la dis-tance à s est minimale... L’algo-rithme de Dijkstra est donc unalgorithme glouton.

Remarque

Exemple 12Détaillons l’algorithme de Dijkstra pour déterminer les plus courts chemins (et leur longueur) reliant le sommet Aaux autres sommets du graphe ci-dessous :

A
B

C
D

E

F

G

H

4
8 7 18

21

10
25

15

12

3113 20
17

8

14

A chaque étape, on regarde sila somme de la distance menantau sommet sélectionné + cellevers ses sommets adjacents estinférieur à la distance déjà écritepour aller vers ce-dit sommet ad-jacent. Si oui, on indique cettenouvelle valeur en précisant dequel sommet elle est obtenue...Puis on souligne la valeur mi-nimale de chaque ligne pourindiquer le nouveau sommet sé-lectionné. On raye ensuite toutesles colonnes du dessous pour in-diquer que le plus court chemindu sommet initial au sommet sé-lectionné a été trouvée.

Important !

A B C D E F G H sommetchoisi0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ A∣∣∣ 4A 8A ∞ ∞ ∞ ∞ ∞ B∣∣∣ ∣∣∣ 8A 22B 25B ∞ ∞ ∞ C∣∣∣ ∣∣∣ ∣∣∣ 18C 25B 33C ∞ ∞ D∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ 25B 30D 49D ∞ E∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ 30D 42E 45E F∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ 42E 38F H∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ 42E

∣∣∣ G
• Pour trouver le plus court chemin reliant A à G, il suffit alors de prendre la colonne G : on récupère l’information42E indiquant que la longueur est de 42 et qu’il faut venir de E ; puis dans la colonne de E, on voit qu’il fautvenir de B ; et dans la colonne de B, on voit qu’il faut venir de A...Le plus court chemin pour aller de A à G est le chemin A − B − E − G .
• Le plus court chemin pour aller de A à H est le chemin A − C − D − F − H .
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IV Éléments d’analyse de réseaux sociaux (HP)
La dernière partie est l’occasion de se focaliser davantage sur l’analyse des réseaux sociaux, et plus particulièrementsur la recherche d’influenceurs. Pour cela, considérons le graphe suivant :

s1s2
s3 s4 s5

s6
s7s8s9

s10
s11
s12

s13
s14

s15

s16
s17 s18

s19
s20
s21

Premier indicateur : centralité de degréLa première approche, un peu naïve, serait de dire que l’influenceur le plus important est le sommet de plus haut degré.On l’appelle centralité de degré, définie par :
CD(i) = d(i)En clair : "plus j’ai d’amis, plus je suis influent"C’est un premier indicateur, mais il est nettement insuffisant. En effet, sur l’exemple précédent, le sommet s1 a le degréle plus élevé, mais les sommets qui lui sont adjacents ont tous un degré égal à 1 ou faible... T’as plein d’amis, mais tes amisont peu d’amis : tu n’es pas uninfluenceur.

En gros...

Second indicateur : centralité de proximitié (ou centralité harmonique)Commençons pour cela par donner un indicateur de proximité entre deux sommets : la distance entre deux sommetsdistincts si et sj est la longueur de la plus courte chaîne reliant si à sj . Si aucune chaîne ne les relie, on dit que ladistance entre les deux est infinie.Notons ∆i,j la distance entre les sommets si et sj . Avec pour convention 1
∞ = 0, on définit maintenant le degré deproximité du sommet si par le nombre :

CP (i) = n∑
j=1
j ̸=i

1∆i,j

La quantité 1
n∑

j=1
j ̸=i

∆i,j

pourrait
aussi convenir si le graphe étaitconnexe... S’il ne l’est pas, ontrouverait 0 pour tous les som-mets.

☞ Pour info...

Plus les distances entre si et les autres sommets sont petites, plus CP (i) sera grand.En clair : "plus je suis proche d’un grand nombre de personnes, plus je suis influent"
Troisième indicateur : centralité d’intermédiaritéAvec ce troisième indicateur, on souhaite mesurer l’importance d’un sommet dans le passage rapide d’une information.Autrement dit, si un sommet est fréquent dans un gros nombre de chaînes les plus courtes entre deux autres sommets,on veut que son degré d’intermédiarité soit fort.Notons alors νj ,k le nombre de plus courtes chaînes reliant sj et sk , ainsi que νj ,k (i) le nombre de plus courtes chaînesreliant sj et sk passant par i.On définit maintenant le degré d’intermédiarité du sommet si par le nombre :

CI (i) = n∑
j=1
j ̸=i

n∑
k=1

k ̸=i,k ̸=j

νk,j (i)
νk,j

En clair : "plus vous passez par moi, plus je suis influent"
Quatrième indicateur : centralité spectrale Partie à lire en deuxième année,après avoir vu les notions de va-leurs propres et vecteurs propresd’une matrice carrée.

Remarque

À travers ce dernier indicateur, on souhaite mesurer l’influence d’un sommet en tenant compte de l’influence de sessommets adjacents... En clair : "plus j’ai d’amis influents, plus je le suis"Ce qui nous amène à définir la centralité spectrale de façon implicite... Supposons le graphe simple et notons M =(mi,j )1⩽i,j⩽n sa matrice d’adjacence. On a alors :
∀(i, j) ∈ J1; nK2, mi,j = { 1 si si et sj sont adjacents0 sinonNotons CS (i) la centralité spectrale du sommet si , nombre que l’on souhaite positif et que l’on définit par l’existence d’unréel strictement positif λ tel que :
CS (i) = 1

λ
∑

j tq sj adj à si

CS (j)
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= 1
λ

n∑
j=1 mi,jCS (j)

On voit bien le caractère implicite dans cette définition : on a besoin des indicateurs sur les voisins de si pour calculerl’indicateur sur si ... Mais pour calculer l’indicateur d’un voisin de si , on aura besoin de l’indicateur de ses voisins, dont
si fait partie ! On tourne en rond... sauf si l’on remarque que l’on a alors :

n∑
j=1 mi,jCS (j) = λCS (i)

et qu’en notant X =


CS (1)
CS (2)...
CS (n)

, on obtient :
MX = λXAutrement dit : le vecteur colonne des centralités spectrales des sommets du graphe est un vecteur propre de M pourune certaine valeur propre de M .

N’est-ce pas plein de beauté ça ?!On comprend mieux le nom decette centralité...
Amazing !!

Bon, il reste tout de même deux petits soucis :
• Comment choisit-on λ parmi les valeurs propres de M ?
• Concrètement, comment fait-on pour calculer ce vecteur ?

Pour répondre à ces deux questions, on combine deux résultats importants :
1. le théorème de Perron-Frobenius,

• Oskar Perron (1880-1975, al-lemand) doit presque toute sapostérité à ce fameux théorème,même si sa contribution ne selimite pas qu’à celui-ci...
• Ferdinand Georg Frobenius(1849-1917, allemand) a établid’importants résultats en théo-rie des groupes et en algèbrelinéaire.

Un peu d’histoire

2. la méthode de la puissance itérée...
L’algorithme PageRank deGoogle, qui trie les pages du Webselon leur pertinence/importance,est basé sur cette centralité spec-trale...Voir ESSEC 2008 E 2.

☞ Pour info...
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