

NOM et Prénom

Cours

Énoncer les deux critères de comparaison par négligeabilité sur les séries à termes généraux positifs.

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de réels. On a :

$$\begin{array}{l} (u_n)_{n\in\mathbb{N}} \text{ et } (v_n)_{n\in\mathbb{N}} \text{ sont à termes positifs} \\ u_n = \underset{n \to +\infty}{\overset{0}{\circ}} (v_n) \\ \sum_{n \geqslant 0} v_n \text{ est convergente} \end{array} \right\} \implies \left(\sum_{n \geqslant 0} u_n \text{ est convergente} \right)$$

$$\left\{ \begin{array}{l} (u_n)_{n\in\mathbb{N}} \text{ et } (v_n)_{n\in\mathbb{N}} \text{ sont à termes positifs} \\ u_n = \mathop{\mathtt{o}}_{n\to+\infty}(v_n) \\ \sum\limits_{n\geqslant 0} u_n \text{ est divergente} \end{array} \right\} \implies \left(\sum\limits_{n\geqslant 0} v_n \text{ est divergente} \right)$$

EXERCICE 1

Les questions de cet exercice sont indépendantes.

1. Déterminer $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^{\sqrt{n}}$.

Pour tout $n \in \mathbb{N}^*$, on a $1 + \frac{1}{n} > 0$ et ainsi : $\left(1 + \frac{1}{n}\right)^{\sqrt{n}} = \exp\left(\sqrt{n}\ln\left(1 + \frac{1}{n}\right)\right)$.

Or

✓ pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} \neq 0$,

 $\checkmark \lim_{n \to +\infty} \frac{1}{n} = 0.$

D'où ln $\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{\sim} \frac{1}{n}$ et ainsi :

$$\sqrt{n} \ln \left(1 + \frac{1}{n} \right) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}$$

Par conséquent :

$$\lim_{n \to +\infty} \sqrt{n} \ln \left(1 + \frac{1}{n} \right) = 0$$

Et par continuité de l'exponentielle en 0, on obtient :

$$\lim_{n \to +\infty} \exp\left(\sqrt{n} \ln\left(1 + \frac{1}{n}\right)\right) = \exp(0) = 1$$

Conclusion:
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{\sqrt{n}} = 1.$$

2. Convergence et somme de la série $\sum_{n\geqslant 0} \frac{n+2}{3^n}$.

Soit $N \in \mathbb{N}$, suffisamment proche de $+\infty$. On a

$$\sum_{n=0}^{N} \frac{n+2}{3^n} = \frac{1}{3} \sum_{n=0}^{N} n \left(\frac{1}{3}\right)^{n-1} + 2 \sum_{n=0}^{N} \left(\frac{1}{3}\right)^n$$

Or $\frac{1}{3} \in]-1$; 1[, donc les séries $\sum_{n \geq 0} n \left(\frac{1}{3}\right)^{n-1}$ et $\sum_{n \geq 0} \left(\frac{1}{3}\right)^n$ sont des séries géométriques convergentes.

Par conséquent, la série $\sum_{n>0} \frac{n+2}{3^n}$ est convergente (comme combinaison linéaire de séries convergentes) et :

$$\sum_{n=0}^{+\infty} \frac{n+2}{3^n} = \frac{1}{3} \sum_{n=0}^{+\infty} n \left(\frac{1}{3}\right)^{n-1} + 2 \sum_{n=0}^{+\infty} \left(\frac{1}{3}\right)^n$$

$$= \frac{1}{3} \frac{1}{\left(1 - \frac{1}{3}\right)^2} + 2\frac{1}{1 - \frac{1}{3}}$$

$$= \frac{1}{3} \frac{3^2}{2^2} + 2\frac{3}{2}$$

$$= \frac{3}{4} + 3$$

$$= \frac{15}{4}$$

Conclusion: la série $\sum_{n>0} \frac{n+2}{3^n}$ est convergente et $\sum_{n=0}^{+\infty} \frac{n+2}{3^n} = \frac{15}{4}$

3. Nature de la série $\sum_{n\geqslant 1} n(e^{\frac{1}{n^2}}-1)$.

On a

✓ pour commencer

$$\checkmark \forall n \in \mathbb{N}^*, \ \frac{1}{n^2} \neq 0,$$

$$\checkmark \lim_{n \to +\infty} \frac{1}{n^2} = 0.$$
D'où:

$$e^{\frac{1}{n^2}} - 1 \sim \frac{1}{n \to +\infty} \frac{1}{n^2}$$

Ainsi:

$$n\left(e^{\frac{1}{n^2}}-1\right) \sim \frac{1}{n}$$

$$\checkmark \forall n \in \mathbb{N}^*, \ \frac{1}{n} \geqslant 0, \ n\left(e^{\frac{1}{n^2}} - 1\right) \geqslant 0$$

✓ la série $\sum_{n \ge 1} \frac{1}{n}$ est la série harmonique, donc est divergente.

Conclusion: par critère de comparaison (par équivalence) sur les séries à termes généraux positifs, la série $\sum_{n>1} n\left(e^{\frac{1}{n^2}}-1\right)$ est divergente.

4. Nature de la série $\sum_{n=1}^{\infty} \frac{\ln(n)}{\sqrt{n}}$

✓ pour tout $n \in [3; +\infty[$, $\ln(n) \ge 1$ et $\sqrt{n} > 0$, d'où :

$$\forall n \in [3; +\infty[, \frac{\ln(n)}{\sqrt{n}} \geqslant \frac{1}{\sqrt{n}} \geqslant 0]$$

✓ la série $\sum_{n \ge 1} \frac{1}{\sqrt{n}}$ est une série de Riemann d'exposant $\frac{1}{2}$, donc elle est divergente $(\frac{1}{2} \le 1)$.

Conclusion : par critère de comparaison (par inégalité) sur les séries à termes généraux positifs, la série $\sum \frac{\ln(n)}{\sqrt{n}}$ est divergente

5. Nature de la série $\sum_{n \ge 1} \frac{\ln(n)}{n^2}$

✓ par croissance comparée : $\ln(n) = \underset{n \to +\infty}{\circ} (\sqrt{n})$. D'où :

$$\frac{\ln(n)}{n^2} \mathop{\circ}_{n \to +\infty} \left(\frac{1}{n^{\frac{3}{2}}} \right)$$

$$\checkmark \forall n \in \mathbb{N}^*, \ \frac{\ln(n)}{n^2} \geqslant 0, \ \frac{1}{n^{\frac{3}{2}}} \geqslant 0$$

✓ la série $\sum_{n\geq 1}\frac{1}{n^{\frac{3}{2}}}$ est une série de Riemann d'exposant $\frac{3}{2}$, donc elle est convergente $(\frac{3}{2}>1)$.

Conclusion : par critère de comparaison (par négligeabilité) sur les séries à termes généraux positifs, la série $\sum_{n\geq 1} \frac{\ln(n)}{n^2}$ est convergente.