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NOM et Prénom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cours
Soit X une variable aléatoire admettant une variance. On suppose l’existence d’une fonction telle que l’exécution de
simuleX() renvoie une réalisation de la variable aléatoire X .
1. Écrire une fonction Python telle que l’exécution de esperanceX() renvoie une valeur approchée de E(X ).

1 def esperance(X):
2 L=[ simuleX () for k in range (10000)]
3 return sum(L)/len(L)

2. Écrire une fonction Python telle que l’exécution de probaX(a,b) renvoie une valeur approchée de P([a ⩽ X ⩽ b]).
1 def probaX(a,b):
2 c=0
3 for k in range (10000):
4 X=simuleX ()
5 if X>=a and X<=b:
6 c=c+1
7 return c/10000

3. En une phrase, expliquer pourquoi l’hypothèse de l’existence de V(X ) semble nécessaire.La loi faible des grands nombres permet de justifier que ce deux programmes répondent aux questions posées ; etcelle-ci demande l’hypothèse d’existence de V(X ).
Exercice 1
Soit U une variable aléatoire suivant la loi uniforme sur ]0, 1], on note V la variable aléatoire définie par

V = 1√
U

1. 1.a. Justifier que V est à valeurs dans [1, +∞[.Démontrons :
∀ω ∈ Ω, V (ω) ∈ [1; +∞[Soit ω ∈ Ω. Puisque U suit la loi uniforme sur ]0; 1], on a0 < U(ω) ⩽ 1Ainsi, par stricte croissance de la fonction √. sur R+ :

0 <
√

U(ω) ⩽ 1D’où, par décroissance de la fonction inverse sur R+∗ :1√
U(ω) ⩾ 1

Autrement dit :
V (ω) ⩾ 1

Conclusion : V est à valeurs dans [1; +∞[.

Il est également possible de poser
g : x 7−→ 1√

x de sorte que
V = g(U).Ainsi, on obtient :

V (Ω) = g
(
U(Ω))= g(]0; 1])= [g(1); lim0 g[

= [1; +∞[

♣ Méthode !

1.b. Montrer que la fonction de répartition de V est donnée par :
FV (x) =

1 − 1
x2 si x ⩾ 10 si x < 1

Soit x ∈ R.
Interrogation 9 - Page 1/5

www.jeremylegendre.fr


• Si x < 1 :
FV (x) = P([V ⩽ x ])

V (Ω) ⊂ [1; +∞[ et x < 1, donc [V ⩽ x ] = ∅= P(∅)= 0
• Si x ⩾ 1 :

Au moment de remplacer FU (z),il faut se poser la question del’ensemble auquel appartient z .En effet, puisque U ↪→ U
(]0; 1]),on a, pour tout z ∈ R :

FU (z) =
 0 si z < 0

z si z ∈]0; 1]1 si z ⩾ 1

✘ Attention !

FV (x) = P([V ⩽ x ])
= P([ 1√

U
⩽ x
])

stricte décroissance de 1
. sur R+∗

= P([√U ⩾
1
x

])
stricte croissance de la fonction .2 sur R+

= P([U ⩾
1
x2
])

= 1 −P
([

U < 1
x2
])

U est à densité= 1 − FU

( 1
x2
)

U ↪→ U
(]0; 1]) et x ⩾ 1, donc 1

x2 ∈]0; 1]= 1 − 1
x2

Conclusion : ∀x ∈ R, FV (x) =
1 − 1

x2 si x ⩾ 10 si x < 1 .
1.c. En déduire que V est une variable aléatoire à densité, et donner une densité fV de V .

✓ Continuité ?

✱ Sur ] − ∞; 1[ : FV est continue sur ]∞; 1[ car constante sur cet intervalle.

✱ Sur ]1; +∞[ : FV est continue sur ]1; +∞[ comme somme de fonctions usuelles continues sur cetintervalle.

✱ En 1 : lim
x→1
x<1 FV (x) = 0 = FV (1) = lim

x→1
x>1 FV (x)

Donc FV est continue en 1.

En fait, on pourrait dire que FVest continue sur [1; +∞[ parles mêmes arguments, et doncseulement vérifier ensuite quelim
x→1
x<1 FV (x) = FV (1). C’est juste
une habitude de travailler sur lesintervalles ouverts pour ce qui estfait ensuite sur le caractère C 1puis le calcul de fV .

Remarque

Conclusion : FV est continue sur R.
✓ Caractère C 1 ?Par des arguments similaires à la continuité, la fonction FV est C 1 sur R, sauf éventuellement en 1.Par conséquent, la variable aléatoire V est à densité et admet pour densité la fonction fV définie sur R par : On dérive sur les intervalles ou-verts ; et on pose des valeurs"arbitraires positives" en les réelsen lesquels FV n’est pas néces-sairement C 1 .Ici, deux valeurs de fV (1) sontnaturelles : 0 (pour recoller avecle cas x < 1) et 2 (pour recolleravec le cas x > 1).

Important !

• pour tout x < 1 :
fV (x) = 0

• pour tout x > 1 :
fV (x) = 2

x3
• et (par exemple)

fV (1) = 2
Conclusion : la variable aléatoire V est à densité et admet pour densité la fonction

fV : x 7−→
{ 2

x3 si x ⩾ 10 si x < 1
2. Déterminer si V admet une espérance et une variance, calculer leurs valeurs éventuelles.

• Espérance.

✱ On sait que :
V admet une espérance si, et seulement si, l’intégrale ∫ +∞

−∞
|xfV (x)|dx est convergente

si, et seulement si, l’intégrale ∫ +∞

1 xfV (x)dx est convergente, car x 7−→ xfV (x) est nullesur ] − ∞; 1[ et positive sur [1; +∞[
si, et seulement si, l’intégrale ∫ +∞

1
2
x2 dx est convergente

✱ Or ∫ +∞

1
1
x2 dx est une intégrale de Riemann impropre en +∞ qui est convergente car d’exposant 2 (et

2 > 1). C’est donc également le cas de l’intégrale ∫ +∞

1
2
x2 dx .
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✱ On en déduit que V admet une espérance et :

On tolère cette rédaction unique-ment parce-que la convergence del’intégrale est déjà connue !
✍ Rédaction

E(V ) = ∫ +∞

−∞
xfV (x)dx

= 2∫ +∞

1
1
x2 dx

= 2[−1
x

]x→+∞

1= 2
Conclusion : V admet une espérance et E(V ) = 2.

• Variance.

✱ Par théorème de transfert, licite car la fonction x 7−→ x2 est continue sur R :
V admet un moment d’ordre 2 si, et seulement si, l’intégrale ∫ +∞

−∞
|x2fV (x)|dx est convergente

si, et seulement si, l’intégrale ∫ +∞

1 x2fV (x)dx est convergente, car x 7−→ x2fV (x) estnulle sur ] − ∞; 1[ et positive sur [1; +∞[
si, et seulement si, l’intégrale ∫ +∞

1
2
x dx est convergente

✱ Or ∫ +∞

1
1
x dx est une intégrale de Riemann impropre en +∞ qui est divergente.

✱ On en déduit que V n’admet pas de moment d’ordre 2, donc pas variance.
Conclusion : la variable aléatoire V n’admet pas de variance.

Pour traiter des cas générauxde variables aléatoires suivantune loi de Pareto, on pourra allerregarder les exercices Ecricome
2025 Appli - Exercice 3 ou,encore mieux, EML 2020 E -
Exercice 3.

☞ Pour info...

On considère une suite (Vi)i⩾1 de variables aléatoires mutuellement indépendantes et suivant la même loi que V .Pour tout entier n ⩾ 1, on définit une variable aléatoire Mn en posant :
Mn = max(V1, . . . , Vn)On note Fn la fonction de répartition de Mn .

3. 3.a. Montrer que Fn = (FV )n pour tout n ⩾ 1.Soient n ∈ N∗ et x ∈ R. On a :
Fn(x) = P([Mn ⩽ x ])= P([max(V1, ..., Vn) ⩽ x ])

= P( n⋂
i=1[Vi ⩽ x ]) indépendance de V1, ..., Vn

= n∏
i=1 P

([Vi ⩽ x ])
V1, ..., Vn ont toutes la même loi que V

= n∏
i=1 P

([V ⩽ x ])
= (FV (x))n

Conclusion : ∀n ∈ N∗, ∀x ∈ R, Fn(x) = (FV (x))n .
3.b. Calculer la limite lim

n→+∞
Fn(x) pour tout x ∈ R.

Soit x ∈ R. D’après la question précédente et la question 1.b. : Fn(x) =

(1 − 1

x2
)n si x ⩾ 10 si x < 1 .

• Si x < 1 :On a, pour tout n ∈ N∗ , Fn(x) = 0. D’où : lim
n→+∞

Fn(x) = 0
• Si x ⩾ 1 :On a, pour tout n ∈ N∗ , Fn(x) = (1 − 1

x2
)n . Or, 1 − 1

x2 ∈] − 1; 1[, donc lim
n→+∞

(1 − 1
x2
)n = 0. D’où :

Si q ∈]−1; 1[, alors lim
n→+∞

qn = 0.
ATTENTION : q ne doit pasdépendre de n, sinon le résultatest en général faux !

☞ Rappel...

lim
n→+∞

Fn(x) = 0
Conclusion : ∀x ∈ R, lim

n→+∞
Fn(x) = 0.
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3.c. Justifier que la suite (Mn)n⩾1 ne converge en loi vers aucune variable aléatoire.D’après la question précédente :
∀x ∈ R, lim

n→+∞
Fn(x) = F (x)où F : x 7−→ 0. Or lim

x→+∞
F (x) ̸= 1, donc la fonction F n’est pas une fonction de répartition.

Conclusion : la suite (Mn)n⩾1 ne converge en loi vers aucune variable aléatoire.
4. Démontrer que la fonction G : x 7−→

{e−1/x2 si x > 00 si x ⩽ 0 est la fonction de répartition d’une variable aléatoire à
densité.
Dans la suite, on considère une variable aléatoire W dont la fonction de répartition est G.

✓ Limites ?

✱ lim
x→−∞

G(x) = 0.

✱ lim
x→+∞

−1
x2 = 0, donc par composition lim

x→+∞
G(x) = 1.

✓ Continuité ?

✱ Sur ] − ∞; 0[ : la fonction G est continue sur ] − ∞; 0[ car constante sur cet intervalle.

✱ Sur ]0; +∞[ : la fonction G est continue sur ]0; +∞[ x 7−→ −1
x2 l’est et que exp est continue sur R.

✱ En 0 : lim
x→0
x>0

−1
x2 = −∞

Donc, par composition : lim
x→0
x>0 e−1/x2 = 0

Ainsi : lim
x→0
x>0 G(x) = G(0) = lim

x→0
x<0 G(x)

Par conséquent, la fonction G est continue sur R.
✓ Caractère C 1 ?Par des arguments similaires à la continuité, G est C 1 sur R sauf éventuellement en 0.
✓ Croissance ?

✱ G est croissante sur ] − ∞; 0[

✱ pour tout x > 0,
G′(x) = 2

x2 e− 1
x2 > 0Donc G est croissante sur ]0; +∞[.Par conséquent, puisque G est continue en 0, on en déduit que G est croissante sur R.

Croissante sur ]a; b[ et croissantesur ]b; c[ n’implique pas croissantesur ]a; c[ ! Contre-exemple : ilsuffit de considérer la fonction
f : x 7−→

1
x si x ̸= 00 si x = 0

Important !

Conclusion : G est la fonction de répartition d’une variable aléatoire à densité.
5. Pour tout n ⩾ 1, on note Gn la fonction de répartition de la variable aléatoire Mn√

n .
5.a. Démontrer que pour tout n ∈ N∗ et tout x ∈ R :

Gn(x) =

(1 − 1

nx2
)n si x ⩾

1√
n0 si x < 1√
n

Soit n ∈ N∗ . Soit x ∈ R.
Gn(x) = P([Gn ⩽ x ])

= P([Mn√
n ⩽ x

])
√

n > 0= P([Mn ⩽
√

nx ])= Fn(√nx) question 3.a.= (FV (√nx))n

=

(1 − 1

nx2
)n si √

nx ⩾ 10 si √
nx < 1 √

n > 0
=

(1 − 1

nx2
)n si x ⩾

1√
n0 si x < 1√
n
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Conclusion : pour tout n ∈ N∗ et tout x ∈ R, Gn(x) =

(1 − 1

nx2
)n si x ⩾

1√
n0 si x < 1√
n

.
5.b. Conclure que la suite (Mn√

n

)
n⩾1 converge en loi vers W .

Soit x ∈ R.
• x doit être pris dans R toutentier, car G est continue sur R...
• La disjonction de cas se fait enlien avec la fonction de répartitionde la loi limite. La faire selon lescas dans l’expression de Gn(x) n’aaucun sens : les cas ne peuventpas dépendre de n !

Important !
• Si x ⩽ 0 :On a, pour tout n ∈ N∗ , 1√

n > 0, donc x < 1√
n et ainsi Gn(x) = 0.D’où : lim

n→+∞
Gn(x) = 0 = G(x)

• Si x > 0 :Puisque lim
n→+∞

1√
n = 0, pour n suffisamment proche de +∞, on a 1√

n ⩽ x , et donc
Gn(x) = (1 − 1

nx2
)n

n suffisamment proche de +∞, donc 1 − 1
nx2 > 0= exp(n ln(1 − 1

nx2
))

Or :
✓ ∀n ∈ N∗, − 1

nx2 ̸= 0 et lim
n→+∞

− 1
nx2 = 0 ;

✓ ln(1 + u) ∼
u→0 u.D’où : ln(1 − 1

nx2
)

∼
n→+∞

− 1
nx2Ainsi :

n ln(1 − 1
nx2

)
∼

n→+∞

−1
x2Par conséquent : lim

n→+∞
n ln(1 − 1

nx2
) = −1

x2
Et par composition de limites : Ou continuité de l’exponentiellesur R, donc en −1

x2 .
Remarque

lim
n→+∞

exp(n ln(1 − 1
nx2

)) = exp(− 1
x2
)

Par conséquent :
∀x > 0, lim

n→+∞
Gn(x) = e−1/x2 = G(x)

On a finalement établi : ∀x ∈ R, lim
n→+∞

Gn(x) = G(x).
Conclusion : la suite (Mn√

n

)
n⩾1 converge en loi vers W .
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